

How-to Guide e
SAP NetWeaver 7.0 (2004s) SAP NetWeaver 7.0 (2004s)

How To…How To…
Set http-
Header
Parameters
using the Axis
Framework
Version 1.10 – June 2008

Applicable Releases:
SAP NetWeaver ’04
SAP NetWeaver 7.0 (2004s)
End-to End-Process Integration
Enabling Application-to-Application Processes
Enabling Business-to-Business Processes

© Copyright 2007 SAP AG. All rights reserved.

No part of this publication may be reproduced or
transmitted in any form or for any purpose without the
express permission of SAP AG. The information
contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its
distributors contain proprietary software components of
other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are
registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel
Sysplex, MVS/ESA, AIX, S/390, AS/400, OS/390, OS/400,
iSeries, pSeries, xSeries, zSeries, z/OS, AFP, Intelligent
Miner, WebSphere, Netfinity, Tivoli, and Informix are
trademarks or registered trademarks of IBM Corporation
in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered
trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame,
WinFrame, VideoFrame, and MultiWin are trademarks
or registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or
registered trademarks of W3C®, World Wide Web
Consortium, Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems,
Inc., used under license for technology invented and
implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, and other
SAP products and services mentioned herein as well as
their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other
countries all over the world. All other product and
service names mentioned are the trademarks of their
respective companies. Data

contained in this document serves informational
purposes only. National product specifications may vary.

These materials are subject to change without notice.
These materials are provided by SAP AG and its affiliated
companies ("SAP Group") for informational purposes
only, without representation or warranty of any
kind, and SAP Group shall not be liable for errors or
omissions with respect to the materials. The only
warranties for SAP Group products and services are those
that are set forth in the express warranty statements
accompanying such products and services, if any.
Nothing herein should be construed as constituting an
additional warranty.

These materials are provided “as is” without a warranty
of any kind, either express or implied, including but not
limited to, the implied warranties of merchantability,
fitness for a particular purpose, or non-infringement.
SAP shall not be liable for damages of any kind including
without limitation direct, special, indirect, or
consequential damages that may result from the use of
these materials.
SAP does not warrant the accuracy or completeness of
the information, text, graphics, links or other items
contained within these materials. SAP has no control
over the information that you may access through the
use of hot links contained in these materials and does not
endorse your use of third party web pages nor provide
any warranty whatsoever relating to third party web
pages.
SAP NetWeaver “How-to” Guides are intended to
simplify the product implementation. While specific
product features and procedures typically are explained
in a practical business context, it is not implied that those
features and procedures are the only approach in solving
a specific business problem using SAP NetWeaver. Should
you wish to receive additional information, clarification
or support, please refer to SAP Consulting.
Any software coding and/or code lines / strings (“Code”)
included in this documentation are only examples and
are not intended to be used in a productive system
environment. The Code is only intended better explain
and visualize the syntax and phrasing rules of certain
coding. SAP does not warrant the correctness and
completeness of the Code given herein, and SAP shall
not be liable for errors or damages caused by the usage of
the Code, except if such damages were caused by SAP
intentionally or grossly negligent.

1 Scenario
As per XI 3.0 SP 20 (SAP NetWeaver 7.0 SP12, Usage Type Process Integration,
respectively), HTTP header parameters can be set dynamically by means of the Axis
Framework used by XI's SOAP adapter. Within the scope of this How-to guide the
relevant settings will be exemplified by the parameters Cookie, Set-Cookie and
SOAPAction which often occur in SOA communication scenarios.

HTTP cookies are a frequently used technology to enable stateful client-server
interactions. This How-to guide provides a detailed description, how cookies can be
exchanged between the HTTP header and XI’s payload.

According to World Wide Web Consortium (W3C), “The SOAPAction HTTP request
header field can be used to indicate the intent of the SOAP HTTP request. The value is a
URI identifying the intent. SOAP places no restrictions on the format or specificity of the
URI or that it is resolvable. An HTTP client MUST use this header field when issuing a
SOAP HTTP Request.”1 This How-to guide provides a detailed description, how the
SOAPAction parameter can be set dynamically by means of the Axis Framework.

2 Introduction

2.1 What are Cookies

The HTTP protocol is stateless by definition. Each HTTP call is technically independent
from any precedent call. In order to enable stateful processing, session information has
to be handled on client side. HTTP cookies are a common technique to associate the
session on the client side to the one on the server side. The cookies contain a unique
session identifier and they are passed forth and back as HTTP header parameters.
Cookies are mainly used in the following use cases:

• Cookies may support server-sessions where a specific set of session data is kept
on the server. This data can then be set-up, re-used, enhanced in multiple
sequential HTTP calls.

• Cookies allow single sign-on to web servers. A session ID transported by the
cookie parameters might be used instead of a repetitive sending of logon data.

• Cookies can be used to enable load balancing on the servers.

Cookies are transported as name-value pairs of the attributes “Set-Cookie” and
“Cookie” in the HTTP header. In case that a session has to be kept during a sequence
of HTTP calls, the response message of the first HTTP call of that session returns the
cookie information in the Set-Cookie attribute:

HTTP/1.0 200 OK
Content-Type: text/xml; charset=utf-8
Set-Cookie: SessionID=myOwnPrivateSession12345

All following HTTP calls sent within the scope of that session will make use of the content
of the Set-Cookie parameter. The client application will have to provide the cookie
information of the initial response message in all following request messages. This

1 See: http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

 - 1 -

information is transported in the Cookie attribute of the HTTP header of the request
message:

POST /service/services/MyService HTTP/1.0
Content-Type: text/xml; charset=utf-8
Host: <host>:<port>
Cookie: SessionID=myOwnPrivateSession12345

The server application will than allocate the HTTP call to the correct session.

2.2 How to Handle Cookies in XI

Since XI 3.0 SP 20 (SAP NetWeaver 7.0 SP12, Usage Type Process Integration,
respectively), HTTP header attributes can be set and read in the SOAP adapter using
the Axis Framework provided by the Adapter Engine. The content of the header
attributes can be transferred from/to the DynamicConfiguration header of the XI SOAP
protocol using the DynamicConfigurationHandler of the Axis Framework. The relevant
settings will be explained in details in section 3. The XI-header parameters of the
DynamicConfiguration (the so-called adapter-specific message attributes – ASMAs) can
then be accessed (read/write) in a mapping program.

The following schema provides an overview how cookies can be handled during
message processing in XI.

1. During the first call (logon, session create, …) the server application creates
cookie to identify the session and sends it in the Set-Cookie parameter of the
HTTP header of the response message of the synchronous call.

2. The SOAP adapter transfers the header parameter “Set-Cookie” to the
DynamicConfiguration header of the XI SOAP message using the Axis
framework.

3. The DynamicConfiguration header of the XI SOAP message can be accessed by
means of a mapping program and its content can be transferred to the message
payload.

 - 2 -

4. The client application handles the cookie within its session and adds it to the
payload of all following calls belonging to that session.

5. A mapping program transfers the content of the cookie to the
DynamicConfiguration header of the XI SOAP message.

6. By means of the Axis framework the content of the cookie is written to the HTTP
header of synchronous request message in the SOAP adapter.

7. The server application allocates the HTTP call to the correct session.

2.3 How to set the SOAPAction HTTP Header Field dynamically

The handling of the SOAPAction HTTP Header field in the Axis Framework of the SOAP
adapter follows the schema of the Cookie attribute described in section 3.3: In a first step
an ASMA of the DynamicConfiguration header of the XI SOAP protocol has to be filled
with the relevant value (e.g. by means of a mapping). Its content is then populated to the
HTTP header using the DynamicConfigurationHandler of the Axis Framework. Since the
configuration for the SOAPAction header field varies slightly from the one for the Cookie
attribute, it will be highlighted in section 3.4.

 - 3 -

3 The Step By Step Solution

3.1 General settings for the Axis Framework of the SOAP adapter

1. Set up the SOAP receiver

Communication Channel to handle
HTTP header parameter dynamically

It is important to set following parameters:
Transport Protocol HTTP(Axis)

Message Protocol Axis

Keep XI Headers “true”

3.2 Transferring the content of Set-Cookie to the message payload

HTTP/1.0 200 OK
Content-Type: text/xml; charset=utf-8
Set-Cookie: SessionID=myOwnPrivateSession12345

1. We assume that the content aimed
for the cookie is provided by the Set-
Cookie parameter in the HTTP
message header.

2. To transfer the HTTP header
parameter Set-Cookie to the XI’s
Dynamic Configuration header called
SetCookie add a module of type
AF_Adapters/axis/HandlerBean to
your processing sequence of the
SOAP receiver Communication
Channel created before. It has to be
inserted just before the predefined
module “xires”. You may choose
an arbitrary name as module key
(here “ dcres”)

 - 4 -

Modul
e Key

Parame
ter
Name

Parameter Value

dcres handler
.type

java:com.sap.aii.axis.xi.XI
30DynamicConfigurationHandl
er

dcres key.a read
http://sap.com/xi/System/HT
TP SetCookie

dcres locatio
n.a

header

dcres value.a Set-Cookie

Your Module Configuration should look like this:

3. Specify the following parameters for
that module

4. Set up a mapping program for the
response message (here: a
Message Mapping).
Develop a user-defined function
getHeaderParameter to transfer
the content of XI’s Dynamic
Configuration parameter SetCookie
to the message payload.

public String getHeaderParameter(String
paramName,String paramNamespace,Container
container){

//write your code here

DynamicConfiguration conf =
(DynamicConfiguration)
container.getTransformationParameters().
get(StreamTransformationConstants.DYNAMI
C_CONFIGURATION);

DynamicConfigurationKey key =
DynamicConfigurationKey.create(paramName
space, paramName);

String value = conf.get(key);

return value;

}

5. Set up a mapping to transfer the
parameter to the relevant field of
your message payload. The input
parameters have to follow the names
of the keys of XI’s Dynamic
Configuration header defined in step
3 of this section.

…

<Item>SessionID=myOwnPrivateSession12345</Item
>

…

6. This field can now be evaluated in
your client application and can be
used in the following calls of your
session.

 - 5 -

3.3 Filling the Cookie parameter of the HTTP header

1. We assume that the content aimed

for the Cookie parameter is provided
by the message payload (here:
within a field called Item).

…

<Item>SessionID=myOwnPrivateSession12345</Item
>
…

public String setHeaderParameter(String
paramValue,String paramName,String
paramNamespace,Container container){

//write your code here

DynamicConfiguration conf
=(DynamicConfiguration)
container.getTransformationParameters().
get(StreamTransformationConstants.DYNAMI
C_CONFIGURATION);
DynamicConfigurationKey key
=DynamicConfigurationKey.create(paramNam
espace, paramName);

conf.put(key, paramValue);

return paramValue;

}

2. Set up a mapping program for the
request mapping (here: a Message
Mapping). Develop a user-defined
function setHeaderParameter to
transfer the content of the message
payload to XI’s Dynamic
Configuration parameter Cookie.

3. Set up a mapping to transfer the
parameter to XI’s Dynamic
Configuration parameter Cookie. The
input parameters have to follow the
names of the keys of XI’s Dynamic
Configuration header defined in step
 5 of this section (here:
http://sap.com/xi/System/HT
TP Cookie).

4. To transfer XI’s Dynamic
Configuration header called Cookie
to the HTTP header parameter
Cookie you have to add two modules
of type
AF_Adapters/axis/HandlerBean to
your processing sequence of the
SOAP receiver Communication
Channel created before. They have
to be inserted just after the
predefined module “xireq”. You
may choose an arbitrary name as
module key (here “ dcreq” and
“rem”)

 - 6 -

Modul
e Key

Parame
ter
Name

Parameter Value

dcreq handler
.type

java:com.sap.aii.axis.xi.XI
30DynamicConfigurationHandl
er

dcreq key.b write
http://sap.com/xi/System/HT
TP Cookie

dcreq locatio
n.b

header

dcreq value.b Cookie

rem handler
.type

java:com.sap.aii.axis.soap.
HeaderRemovalHandler

rem namespa
ce

http://sap.com/xi/XI/Messag
e/30

5. Specify the following parameters for
these modules

Your Module Configuration should look like this.

Note:

1. The parameters key.c, location.c and value.c are
discussed in section 3.4

2. The module “rem” has to be used in order to remove
the XI specific SOAP header.

POST /service/services/MyService HTTP/1.0
Content-Type: text/xml; charset=utf-8
Host: <host>:<port>
SOAPAction: "urn:doSomething"
Cookie:
SessionID=myOwnPrivateSession12345

6. The header of your HTTP request
looks like the following

 - 7 -

http://sap.com/xi/XI/Message/30
http://sap.com/xi/XI/Message/30

3.4 Filling the SOAPAction parameter of the HTTP header

…

<Item>urn:doSomethingDifferent</Item>

…

1. We assume that the content aimed
for the SOAPAction parameter is
provided by the message payload
(here: within a field called Item).

public String setHeaderParameter(String
paramValue,String paramName,String
paramNamespace,Container container){

//write your code here

DynamicConfiguration conf
=(DynamicConfiguration)
container.getTransformationParameters().
get(StreamTransformationConstants.DYNAMI
C_CONFIGURATION);
DynamicConfigurationKey key
=DynamicConfigurationKey.create(paramNam
espace, paramName);

conf.put(key, paramValue);

return paramValue;

}

2. Set up a mapping program for the
request mapping (here: a Message
Mapping). Develop a user-defined
function setHeaderParameter to
transfer the content of the message
payload to XI’s Dynamic
Configuration parameter
THeaderSOAPACTION (You may
reuse the user-defined function of
step 2 of section 3.3).

3. Set up a mapping to transfer the
parameter to XI’s Dynamic
Configuration parameter
THeaderSOAPACTION. The input
parameters have to follow the
names of the keys of XI’s Dynamic
Configuration header defined in step
 5 of this section. You can make use
of the Adapter-Specific Message
Attribute
http://sap.com/xi/XI/System
/SOAP THeaderSOAPACTION of
the SOAP adapter.

4. To transfer XI’s Dynamic
Configuration header called
THeaderSOAPACTION to the HTTP
header parameter SOAPAction, add
two modules of type
AF_Adapters/axis/HandlerBean to
your processing sequence of the
SOAP receiver Communication
Channel created before. They have
to be inserted just after the
predefined module “xireq”. You
may choose an arbitrary name as
module key (here “ dcreq” and
“rem”)

 - 8 -

 - 9 -

Module
Key

Parame
ter
Name

Parameter Value

xireq default
SOAPAct
ion

urn:doSomething

xireq handler
.type

java:com.sap.aii.axis.xi.X
I30OutboundHandler

dcreq handler
.type

java:com.sap.aii.axis.xi.X
I30DynamicConfigurationHan
dler

dcreq key.c write
http://sap.com/xi/XI/Syste
m/SOAP THeaderSOAPACTION

dcreq locatio
n.c

context

dcreq value.c javax.xml.rpc.soap.http.so
apaction.uri

rem handler
.type

java:com.sap.aii.axis.soap
.HeaderRemovalHandler

rem namespa
ce

http://sap.com/xi/XI/Messa
ge/30

Your Module Configuration should look like this.

Note:

1. It is mandatory to set the parameter
defaultSOAPAction in module xireq

5. Specify the following parameters for
these modules

2. The parameters key.b, location.b and value.b are
discussed in section 3.3.

3. The module “rem” has to be used in order to remove
the XI specific SOAP header.

POST /service/services/MyService HTTP/1.0
Content-Type: text/xml; charset=utf-8
Host: <host>:<port>
SOAPAction: "urn:doSomethingDifferent"
Cookie:
SessionID=myOwnPrivateSession12345

6. The header of your HTTP request
looks like the following

www.sdn.sap.com/irj/sdn/howtoguides

http://www.sdn.sap.com/irj/sdn/howtoguides

	1 Scenario
	2 Introduction
	2.1 What are Cookies
	2.2 How to Handle Cookies in XI
	2.3 How to set the SOAPAction HTTP Header Field dynamically

	3 The Step By Step Solution
	3.1 General settings for the Axis Framework of the SOAP adapter
	3.2 Transferring the content of Set-Cookie to the message payload
	3.3 Filling the Cookie parameter of the HTTP header
	3.4 Filling the SOAPAction parameter of the HTTP header

