
Rev 2.01
1-Feb-98 i CMI001

DOCUMENT NO. CMI001

CMI Guidelines for Interoperability
AICC

ORIGINAL RELEASE DATE 25-Oct-93
Revision 3.5 release 2 Apr 2001

THIS DOCUMENT IS CONTROLLED BY:

AICC CMI Subcommittee

ALL REVISIONS TO THE DOCUMENT SHALL BE APPROVED
BY THE ABOVE ORGANIZATION PRIOR TO RELEASE.

POINT OF CONTACT:

Scott Bergstrom
AICC Administrator

P.O. Box 472
Sugar City, ID 83448-0472

Telephone: (208) 356-1136
Internet address: bergstroms@ricks.edu

PREPARED ON PC FILED UNDER CMI18.DOC
Caveats...

 2001 AICC
All rights reserved

The information contained in this document has been assembled by the AICC as an informational resource.
Neither the AICC nor any of its members assumes nor shall any of them have any responsibility for any use
by anyone for any purpose of this document or of the data which it contains.

25-Oct-93 ii CMI001

Prepared by: ________________________ ____________
Jack Hyde Date
Chairman CMI Subcommittee
FlightSafetyBoeing
(206) 662-8484

Approved by: ________________________ ______________
Chairman AICC Date

Rev 1.5
26-Jan-96 iii CMI001

ABSTRACT

This guideline first outlines and defines a number of Computer
Managed Instruction (CMI) principles and terms. It then addresses
three aspects of interoperability of Computer Managed Instruction
systems. Guidelines appear for:

• Communication between a CMI system and a lesson

• Moving a course between different CMI systems

• Storing lesson evaluation data

Each of these aspects of interoperability depends upon files.
Guidelines for the format and content of the files are also
described.

KEY WORDS

CMI
Computer Managed

Instruction
Course structure
Evaluation

File format
Guidelines
Lesson evaluation
Performance data
Student performance

The use of registered names, trademarks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

AICC CMI Guidelines

Rev 1.4
5-Jan-96 iv CMI001

REVISION HISTORY

NEW
(Version 1)

October 1993

The contents of this document represent the first official release, which
was approved in September, 1993 at the General Meeting of the
AICC.

REV 1.1 April 1994

Sec 5.0 Reformats and amplifies description of contents of the chapter.
Sec 5.0.3 Changes DOS environment variable approach to passing file name to

lesson. Now requires PARAM$CMI as environment variable name.
Sec 5.1.1 Adds names of lesson status flags to the reference.
Sec 5.1.2 Reformats information, no change in content.
Sec 5.1.5 Amplifies definition and argument description.
Sec 5.2 Adds Student_Data group.
Sec 5.2.6 New group with new keywords.
Sec 6.1 Adds four keywords to track file version.
Sec 6.1.1 Adds explanation of why four new keywords are needed.
Sec 6.1.2 Adds the new version keywords.
Sec 6.2, 6.3 Redefines first record in the file. Reformats table display.
Sec 6.4, 6.5 Adds version number to title and table. Updates example.
Sec 6.6 Adds version number to title and table.
Sec 6.7 Adds version number to title.
Sec 7.1, 7.2, 7.3,
7.4

Adds STUDENT_ID field. Reformats table. Adds first record with
field identifiers. Defines field identifiers.

Sec 8.1 Adds [STUDENT_DATA] group.
Sec 8.2, 8.3 Adds descriptive material. Adds version keywords. Reformats some

tables. Removes line number

REV 1.2 July 1994

Pg i Adds E-mail address for "Point of contact."
Pg iii Adds request for E-mail address to registration form.

AICC CMI Guidelines

Rev 3.5
2-Apr-01 v CMI001

Sec 5.0.2 Removes incorrect statement that this document does not contain
standards for student records generated by the CBT lesson.

Sec 5.0.3 Changes third method for passing data from CMI to CBT. Indicates
PARAM.CMI file should be placed in the \WINDOWS directory
instead of the working directory. Necessary because some Windows-
based CBT lessons change the working directory when launched.

Sec 5.1.1 Amplifies the description of the usage rules to clarify and correspond to
the definition.

Sec 5.2.1 Adds description of the "Score" keyword. Inadvertently left out on
previous revisions.

REV 1.3 March 1995

Sec 3.1 Added a description and rationale for preserving course behavior when
using course interchange.

Sec 5.1 Add credit keyword to [Core] group.
Moved the Path keyword from [Private_Area] to [Core].
Removed the [Private_Area] group.
Moved language keyword from [Student_Demographics] to
[Student_Preferences]
Change arguements of Lesson_Mode to relate to lesson behaviors.
Separate lesson behavior from CMI mode. Two separate concepts.
Lesson behaviors can be set independently from CMI mode.
Appropriate lesson behaviors are preset for each CMI mode. The
behavior for each mode is found as an argument (for keywords
Normal_Mode_Default, Browse_Mode_Default, and
Review_Mode_Default) in the course interchange Course file.

Sec 5.1.1 Define 5 lesson behaviors for Lesson_Mode keyword.

• Sequential

• Choice

• Fast

• Test

• X-test

Lesson_Status now includes only one flag -- the resume flag.
Added a new status of BROWSED

Sec 5.1.1.1 New section to define CMI modes, and the defaults for when they are to
be used.

Sec 5.1.1.2 New section to define special cases where CMI modes may not be the
same as the defaults defined in 5.1.1.1.

Sec 5.1.1.3 New section to revise the status vs. modes discussion. Revised table
with the addition of Credit and Lesson Mode columns.

AICC CMI Guidelines

Rev 3.5
2-Apr-01 vi CMI001

Sec 5.1.6 This section formerly covered the [Private_Area] group.
Sec 5.1.6 Local_ID was removed and J_ID definition changed.
Sec 5.1.7 Cumulative_time keyword was removed.

Time_limit_action keyword arguments modified to include
NO_MESSAGE

Sec 5.2 Local_ID removed from [Objectives_Status]
Moved language keyword from [Student_Demographics] to
[Student_Preferences]

Sec 5.2.1 Lesson_Status has 3 flags

• Time-out: same as before

• Suspend: new

• Logout: same as before

Sec 6.1 New group created: Course_Behavior. Reorder group names to place in
alphabetical order.

Sec 6.1.3 Course_Behavior group has six new keywords defined.

• Browse_Mode_Default

• Browse_Mode_Type

• Max_Normal

• Normal_Mode_Default

• Review_Mode_Default

• Review_Mode_Type

Define arguments for browse and review mode types.

• Forced

• Not_allowed

• Allowed

• Suspend_only

REV 1.4 January 1996

Rev 1.4 This is a maintenance update to the document with mostly

• typographic error and formatting corrections,

• order changes (rearrangements), and

• minor amplifications and corrections.
Pages 46 to 49
Page 138
Page 199

AICC CMI Guidelines

Rev 3.5
2-Apr-01 vii CMI001

Sec 6.2 The only changes to the standard are the

• Addition of a field (Time Limit Action) to the assignable unit file
 Page 159

• Renaming of “Duration” to “Max Time Allowed” in the assignable
unit file.

Pages 155 to 156, and page 159

REV 1.5 January 1996

Several keyword format descriptions were modified to identify that their
extensions should not be zero padded.

Sec 4.3.3 Clarify format of groups. Explicitly identify no spaces between
brackets.

Sec 5.1.6 Objectives_Status keywords J_ID, J_Score, and J_Status extension
definitions changed to eliminate zero padding. J_ID definition clarified.

Sec 5.1.7 Student_Data keywords Lesson_Status and Score extension definitions
changed to eliminate zero padding.

Sec 5.1.9 Student_Preferences Window extension definition changed to eliminate
zero padding.

Sec 5.2.4 Objectives_Status keywords J_ID, J_Score, and J_Status extension
definitions changed to eliminate zero padding.

Sec 5.2.5 Student_Data keywords Lesson_Status and Score extension definitions
changed to eliminate zero padding.

Sec 5.2.6 Student_Preferences Window extension definition changed to eliminate
zero padding.

Sec 6.1.2 Course Keywords. Total_Aus – removed zero padding in AU
identifiers.

Sec 6.1.3 Clarify note regarding CMI compliance on page Error! Bookmark not
defined..

Sec 6.3 System ID – removed the example with zero padding.
Developer ID – Data format definition changed to exclude spaces.

AICC CMI Guidelines

Rev 3.5
2-Apr-01 viii CMI001

REV 1.6 25 April 1996

Sec 6.6.3 Logic statement descriptions amplified and new examples added. New
logic constructs include the use of “not” and “sets”.

Sec 6.7 Added reference to logical notation in Section 6.6.3.

REV 1.7 2 January 1997

Typographical errors corrected. Note, many typographical corrections
are not marked with a revision bar.

Sec 5.1 Significant rewrite to this section to clarify concepts.

CMI compliant features now fall into two categories: Required and
Optional. Core is no longer a compliance category.

Lesson_Mode keyword made optional.

Score.1 keyword added to [Student_Data] summary list (corrected
oversight).

Age, Birth_Date, Race, Religion, and Sex removed from
[Student_Demographics] group (change in guidelines).

Sec 5.1.1 Lesson_Mode made optional. Description of Lesson_Mode clarified.

Lesson_Status clarified. Status Flag now required, no longer optional.

Sec 5.1.1.1 Section retitled and rewritten to eliminate ambiguity.

Sec 5.1.1.2 Section retitled and rewritten to eliminate ambiguity.

Sec 5.1.1.3 Section retitled and rewritten to eliminate ambiguity.

Sec 5.1.8 Age, Birth_Date, Race, Religion, and Sex removed from
[Student_Demographics] group.

AICC CMI Guidelines

Rev 3.5
2-Apr-01 ix CMI001

REV 1.8 3 March 1997

Sec 4.4 Emphasized limitation to comma-delimited ASCI file format – separator
may be comma only. Some current software allows other separators.

Sec 5.1.1 Added an “A” flag to lesson_status. Amplified and added to examples.
Sec 5.1.1.2 Added note that lesson status may also be changed by using rules

defined in the Completion Requirements file.
Sec 5.1.7 Mastery_Score: Identify where system keeps and finds mastery_score.

Max_Time_Allowed: Identify where system keeps and finds.
Time_Limit_Action: Identify where system keeps and finds.

Sec 5.1.9 Clarification of how system handles Student_Preferences (storing both
keyword and argument as given by the lesson.)
Removed 255 byte limit on size of student preferences.
Added clarification of lesson and CMI responsibilities in handling
student preferences.
Added SPEED preference.
Bookmark preference removed. Feature is more appropriate for
Core_Lesson than Student_Preferences.

Sec 5.2.1 Lesson_Status: clarify that use of flags is required.
Sec 6 Removed version number from all file names. Files may be referenced

to Specification Document version – they do not need separate version
numbers.

Sec 6.0.3 Reduced levels of complexity for structure passing from 5 to 4. When
the Completion Requirements moved from level 4 to level 2, there was
no longer a need for a separate level 4. Redefined and described each of
the 4 levels now supported.

Sec 6.2 Assignable Unit File: Clarify that fields may be in any order (as
determined by first record).

Sec 6.3 Descriptor File: Clarify that fields may be in any order (as determined
by first record).

Sec 6.4 Clarify that order is critical in Course Structure File and fields may not
be in any order.

Sec 6.6 Prerequisites File: Clarify that fields may be in any order (as
determined by first record). Added first record to example file.

Sec 6.6.1 Added clarification to defining AU and objective status.
Sec 6.6.3 Expanded description of logic statements to allow explicit identification

of status of any structure element.
Sec 6.7 Completion Requirements File: Significant changes to allow definition

of completion requirements for all structure elements; and to add a third
field in each record. Third field allows specific statuses to be assigned
based on completion logic.

AICC CMI Guidelines

Rev 3.5
2-Apr-01 x CMI001

Sec 8.1 CMI/Lesson Communication Files:Revised to reflect Student
Preferences changes.

Sec 8.2 Course Structure Files: Revised to reflect 4 levels and changes in
Completion Requirements file.

REV 1.9 22 May 1997

Sec 5.1.1.2 Added paragraph summarizing the principles resulting in the Lesson
Status table. Moved Note to end of table.

Sec 5.1.1.3 Added note to end of Status and Behavior Relationships table.
Sec 6.0.1 Added paragraph emphasizing the importance of the order of records in

the structure interchange tables.
Sec 6.1 Identified keywords that are optional for level 1 complaince.
Sec 6.1.2 Identified keywords that are optional for level 1 complaince.
Sec 6.1.3 Identified keywords that are optional for level 1 complaince.
Sec 6.2 Identified which field values are required for level 1 complaince.

References to “non-existent files” changed to “hypothetical files”
throughout the document.

Sec 6.3 Identified which field values are required for level 1 complaince.
Sec 6.4 Emphasized importance of maintaining order of records in file.
Sec 6.4.2 Amplified the example by adding a Course Descriptor file.
Sec 6.6 Removed references to 5 levels of course interchange.
Sec 6.7 Added rules on the number of completion logic statements allowed per

course element, and the order of these statements.
Added additional examples.

REV 2.0 1 February 1998

This revision added information necessary to enable the operation of
CMI over intranets and the Internet.

Appendix A This is all new, and covers information to enable CMI integration with
Web technology.

Glossary New terms have been inserted. These new terms all relate to use of
CMI with Web technology.

REV 2.1 1998 June 18

AICC CMI Guidelines

Rev 3.5
2-Apr-01 xi CMI001

Sec 4.5 Created new section to emphasize existing size limits. Clarified and
added two size limits for [comments] and [course_description] (4096
bytes.)
Change keyword length and field size to 255.

Sec 5.1.1 Integer number. Clarify that range is –32,768 to +32,767.
Lesson location: May be blank as well as 0. Change length (in Format)
of student ID from 11 to 255 characters.

Sec 5.1.2 Change length of [Core_Lesson] from 254 to 4096 bytes.
Sec 5.1.3 Change length of [Core_Vendor] from 254 to 4096.
Sec 5.1.4 Change length of [Comments] group to 4096.
Sec 5.1.7 Clarify that mastery score must be supported completely. CMI must

change status if necessary as a result of mastery score computations.
Sec 5.2.3 Change length of [Comments] to 4096.
Sec 5.2.6 Removed bookmark from student preferences. Overlooked when done

in revision 1.8.
Sec 6.1.4 Course Description group: Changed size limit for line and added group

size limit of 4096. . Remove description of line length limits and
embedded carriage returns <cr>.

Sec 6.2 Core vendor: Clarify that is level 1 requirement though field may be
blank. Change field length from 254 to 4096.

Sec 6.3 Developer ID. Clarify definition. Change Description field length from
254 to 255.

Sec 6.7 Completion Requirements File: Added a table representing the contents
of the file to the beginning of the section. This makes it consistent with
other sections.

Sec 7.1 Date field: Make year 2000 compliant. New format 1998/05/01.
Change Date field in example file to make year 2000 compliant.
Time: Make time unambiguous.
Comment: Change the length of each field from 254 to 255.

Sec 7.2 Time: Make time unambiguous.
Change Date field in example file to make year 2000 compliant.
Objective_ID: Clarify relationship to Developer_ID.

Sec 7.3 Time: Make time unambiguous.
Sec 7.4 Time: Make time unambiguous.

Change Date field in example file to make year 2000 compliant.
Appendix A.3.2 Change Web_Launch and AU_Password fields from 254 to 255
Appendix A.4 Carify how to construct the URL command line.
Appendix A.5 Correct content type to “application/x-www-form-urlencoded”.

REV 2.2 1998 October 12

Sec 4.3.1 Remove limitation of 80 characters for an INI file line.

AICC CMI Guidelines

Rev 3.5
2-Apr-01 xii CMI001

Sec 5.1.2 Change recommendation to requirement. CMI must hold
[Core_Lesson] data for as long as the student is in the course.

Sec 6.1 Replace reference to 8-character filename. Remove implied limit of 8
characters. The filename is not limited except by operating system
limits.

Sec 6.2 Replace reference to 8-character filename.
Sec 6.3 Eliminate requirement for line_number.

Replace reference to 8-character filename.
Sec 6.4 Replace reference to 8-character filename.
Sec 6.5 Replace reference to 8-character filename.
Sec 6.6 Replace reference to 8-character filename.
Sec 6.7 Replace reference to 8-character filename.
Sec 7.1 Eliminate requirement for Line_Number.
Appendix A.3.2 Clarified definition of Web Launch Parameters to avoid confusion with

AICC-required parameters.
Appendix A.4 Amplified description of URL command line to avoid confusion of

required parameters and web launch parameters.
Appendix A.5.1 Corrected example to include %0A (line feed) as well as %0D (carriage

return).
Appendix A.5.2 Remove option of using single character -- ASCII 13 -- for carriage

return. Must use line feed with each carriage return.
Remove reference to "request method."

REV 3.0 1999 September 1 & 21

Sec 1.0 Added a paragraph on the organization of the document.
Sec 5.0.3 Define a mechanism for finding PARAM.CMI that works for Windows

NT as well as 95/98.
Sec 5.1.1 Redefine and significantly simplify Lesson Mode.

Moved information on Lesson Status into this section.
Added maximum and minimum to Score. Allow use of decimal in score.
Changed format of time to allow up to 9999 hours. Changed seconds to
allow inclusion of decimal point.

Sec 5.1.1.1 Removed. Section on complex modes and lesson behavior.
Sec 5.1.1.2 Removed. Determining Lesson Status.
Sec 5.1.1.3 Removed. Determining Lesson Behavior.
Sec 5.1.6 Corrected keyword format typos.

Added minimum and maximum to objective score. Allow use of
decimal in score.

Sec 5.1.7 Added minimum and maximum to objective score. Allow use of
decimal in score.

Sec 6.0.1 Removed references to complex modes.

AICC CMI Guidelines

Rev 3.5
2-Apr-01 xiii CMI001

Sec 6.0.3 Change levels of complexity to 3 from 4.
Sec 6.1 Removed 5 course behavior keywords.
Sec 6.1.1 Removed. Version Sensitivity.
Sec 6.1.1 Redefined Level to incorporate 3 not 4.
Sec 6.1.2 Removed 5 course behavior keywords.
Sec 6.3 Corrected Description to 4096 characters instead of 255.
Sec 6.4 Corrected Course structure table.
Sec 6.5 Changed Objectives Relationship table to begin with Course_Element

instead of Block.
Sec 6.6 Correct levels reference to 4.

Remove Mode column from prerequisites file.
Sec 6.6.1 Added Browse to Incomplete statuses.
Sec 6.6.2 Removed. Entry Modes.
Sec 6.6.2 Renumbered 6.6.3.

Removed never and added equals to logic operators.
Removed references to level 4. Corrected to level 3A and 3B.

Sec 6.7 Added Next field to completion requirements file.
Added forced Return field to completion requirements file.
Corrected level references from 4 to 3A or 3B.

Sec 6.8 Removed mode from examples.
Demonstrated how Next may be used for remediation.

Sec 7.2 Added Numeric as another type of interaction.
Result field number may now have a decimal point in it. No longer
limited to an integer from 1 to 100.

Sec 8.2 Removed 5 course behaviors.
Removed line number in Descriptor file. Field now has up to 4096
characters.
Changed title of Structure_Element column to Course Element to
accurately reflect possible entries in the column.
Added next column to Completion Requirements File.
Changed references to level 4 to 3a or 3b.

Appendix A.4 Corrected examples to URL encoded.
Appendix B Added. Specification for API usage with CMI.
Glossary Amplified definition of URL encoded.

REV 3.0.1 1999 November 24

Sec 5.1.1 Clarify meaning of time – total time in assignable unit.
Sec 5.2.1 Clarify meaning of time –time for a single use: session time.
Sec 7.2 Added Response_Value field to avoid ambiguity of Weighting.
Sec 8.3 Added Response_Value to table.
Appendix B.3.8 Add 3 new error codes.

AICC CMI Guidelines

Rev 3.5
2-Apr-01 xiv CMI001

Appendix B.4 Rename time to total_time. Avoid API get and set time ambiguity.
Rename status to statuses. Consistent use of plurals for arrays.

Appendix B.5 Rename time to session_time. Avoid API get and set time ambiguity.
Appendix B.6 Change correct_response to responses with sub-elements of description

and value. Fix weighting ambiguity.
Change path to paths – array convention.

Appendix B.7 Add clarification that vocabulary is very literal.
Appendix B.8 Rename time to total_time. Avoid API get and set time ambiguity.

Objectives.status to objectives.statuses. Plural for array.
Rename time to session_time. Avoid API get and set time ambiguity.
Add responses, description, and value to Evaluation Data Table.
Change path to paths – array convention.

REV 3.0.2 2000 May 8

Sec 5.1.1 Added more examples to Scores.
Sec 6.7 Corrected first record of Completion Requirements File in tables.

Added graphics to clarify examples.
Sec 7.2 Amplify description of Type Interaction. Remove Unique type

(unanticpated may be a response, cannot be an interaction.)
Removed Response_Value.

Sec 7.4 Added definition for 4th reason for leaving.
Appendix A.6.2 Remove references to multiple PutParam’s affecting subsequent

GetParams.
Emphasize that multiple PutPerformance’s result in complete
overwrites.

Appendix B.3.5 cmi.element._count description amplified to make clear that count is
total elements, not the last number used in indexing the array.

Return value for a call for _children clarified to indicate an empty string
may mean support with no children or no support. Another call for
last error is required to determine which.

Appendix B.4 Corrected table: heading fix and matching call to name column.
Corrected data model in the table. Scores and statuses changed to single

values for both objectives and student_data.attempt_records. Tries
added to indicate which score or status is being reported.

Changed evaluation.path to evaluation.paths to be consistent with B.6.
Removed evaluation.performance because no defined way of passing

complex performance information with API.
Appendix B.5 Corrected table: heading fix and matching call to name column.

AICC CMI Guidelines

Rev 3.5
2-Apr-01 xv CMI001

Appendix B.6 Corrected table: matching call to name column.
Changed objectives to objectives_status to be consistent with B.4 and
file-based usage.
Changed interactions.responses.description to
interactions.correct_responses.pattern to be more consistent with file-
based terminology.
Removed interactions.responses.value.
Changed objective_ids to objectives.n.id to be consistent with B4, B5,
and data modeling conventions.
Changed objectives.id value type from CMIString256 to CMIIdentifier.

Appendix B.7 Corrected 3 Interaction data types to reflect file-based usage: multiple
choice -> choice; fill in the blank -> fill-in; simple performance ->
performance.

Appendix B.8 Changed evaluation.path to evaluation.paths to be consistent with other
tables.
Removed evaluation.performance because complex performance
information is not supported by any defined API’s.
Changed name from interactions.responses.description to
interactions.correct_responses.pattern to make more obvious
relationship to file-based concepts.
Removed interactions.responses.value.

REV 3.4 2000 June 27

Sec 5.1.1 Lesson Location: First entry may be blank or empty string. Not zero.
Lesson_Status: Meaning of the absence of a flag explained.
Score. Changed wording from “last attempt” to “last session.”

Changed “lesson” to “assignable unit.” or AU
Sec 5.1.7 Attempt_Number: Differences between the meaning of attempts and

sessions explained.
Lesson_Status: Meaning of the absence of a flag explained.

Sec 5.2.1 Time: Clarification of how the AU and CMI treat the time data element.
Appendix A.5.2 In Usage rules, parenthetical description of white space corrected to

exclude CR and LF.
Appendix B In all API calls the word “null” is replaced by an empty string. This

avoids ambiguity and is consistent with the original intent of using
“null”.

Replaced multiple occurrences of “lesson” with “assignable unit” or
“AU.”

Replaced multiple occurrences of “attempt” with “session.”

AICC CMI Guidelines

Rev 3.5
2-Apr-01 xvi CMI001

Appendix B.2.2 Amplify and clarify the CMI responsibilities. Divide responsibilities
into Launch, Communication, and Sequencing. Add Sequencing
information.

Appendix B.2.3.1 Revise code to find the API. New code works with more browsers.
Appendix B.3 Added rule that array elements shall be added sequentially. Skipping

index numbers and empty array elements are not allowed.
Appendix B.3.4 LMSFinish() shall return a value of “true” or “false.” (Same as

LMSInitialize().)
Appendix B.3.5 Corrected case of return value for lesson_status.
Appendix B3.8 Added error code 102. Server is busy.

Added error code 402. Invalid SetValue, element is a CMI keyword.
Added error code 403. Element is read only.
Added error code 404. Element is write only.
Added error code 405. Incorrect Data Type

Appendix B.4 Amplified introductin. Explained the different uses of the data element
“comments.” Changed the word lesson to assignable unit or AU.

Corrected example calls for total_time.
Amplified definition of total_time to better define behavior of LMS.
Changed CMILocale to CMIString255

Appendix B.5 Corrected example for session_time.
Changed CMILocale to CMIString255.
Corrected comments. It is not an array, (but retains the plural form for

consistency.)
Appendix B.6 Intent of this table and relation to Lesson Evaluation Data is explaned.

Corrected mastery_time example call.
Changed name of Student Data Collection table to Lesson Evaluation

Data table to be consistent with naming used in other chapters of
this document.

Appendix B.7 CMIFeedback description amplified.
CMIString256 replaced by CMIString255 throughout document to

reflect the actual number of bytes in the data type.
CMITime definition clarified.
Time Limit Action vocabulary more clearly defined. Ambiguity of how

to order and separate elements eliminated.
Appendix B.8 Corrected reference to objectives.id in Lesson Evaluation Data table.

Corrected data model name to objectives_status.
Appendix B.9 Create new table to consolidate AU to LMS communication and Lesson

Evaluation data models.
Glossary Added definition for API.

Added to definition of CMI.
Corrected definition of “core item.”
Added definition for LMS.
Added definition for “session.”
Added definition for “session.”

AICC CMI Guidelines

Rev 3.5
2-Apr-01 xvii CMI001

REV 3.5 2001 Apr 2

The main purpose of this revision to to make the AICC API match the
ADL SCORM version 1.1. The two changes necessary are to make the
function calls all return a true false if not returning data, and to add an
new data element called comments_from_lms. The other changes are
corrections or amplifications.

Sec 5.1.1 Correct to say lesson_status must have a flag when appropriate. (No flag
has meaning too. No flag means normal re-entry.)

Sec 6.4.2 Developer ID added to example table. Developer ID is required.
Removed line_number from same table.

Sec 7.0 Removed line # from contents table.
Appendix A.4 Corrected table and example to show “http://” is required in URL.
Appendix B.3.2 Added return value to data elements that previously did not have one.
Appendix B.3.4 Corected parameter and added return value.
Appendix B.3.6 Added return value of CMIBoolean.
Appendix B.3.7 Added return value of CMIBoolean.
Appendix B.3.8 Corected parameter (from none to empty string).
Appendix B.4 Added comment_from_lms data element.

Changed objectives.n.scores to objectives.n.score (single value to match
SCORM.)
Changed objectives.n.statuses to objectives.n.status (single value)

Appendix B.5 Changed objectives.n.scores to objectives.n.score (single value to match
SCORM)
Changed objectives.n.statuses to objectives.n.status (single value).

Appendix B.6 Corrected interactions.n.id value data type to CMIIdentifier (from
CMIString255)
Corrected paths.n.location_id data type to CMIIdentifier.

Appendix B.8 Changed objectives.n.scores and statuses to score and status.
Appendix B.9 Changed interactions.id data type to CMIIdentifier.

Changes objectives.scores and statuses to score and status.
Changed paths.location_id data type to CMIIdentifier.

AICC CMI Guidelines

24-Nov-99 xviii CMI001

TABLE of CONTENTS

1.0 INTRODUCTION.. 1

2.0 CMI OVERVIEW.. 2

2.1 GENERAL COMPONENTS OF CMI... 3
2.2 DEVELOPMENT OF COURSE STRUCTURES.. 5
2.3 TESTING .. 9
2.4 ROSTER OPERATIONS .. 10
2.5 STUDENT ASSIGNMENT MANAGEMENT... 11

2.5.1 Instructor/Administrator Functions .. 12
2.5.2 System Assignment of Student ... 13
2.5.3 Student Logon.. 15

2.6 DATA COLLECTION AND MANAGEMENT ... 16

3.0 INTEROPERABILITY OVERVIEW.. 21

3.1 MOVING COURSES... 23
3.2 CMI COMMUNICATION ... 26
3.3 STORING STUDENT DATA.. 27

4.0 INTEROPERABILITY KEY: THE FILE ... 29

4.1 DATA FLOW .. 30
4.2 FILE SUMMARY ... 33
4.3 MS WINDOWS INI FILES .. 38

4.3.1 File Structure... 39
4.3.2 Comments .. 40
4.3.3 Groups... 41
4.3.4 Keywords... 43

4.4 COMMA DELIMITED ASCII ... 46
4.5 FILE LIMITS... 49

5.0 CMI/LESSON COMMUNICATION .. 50

5.0.1 Launching CBT Lessons.. 51
5.0.2 Data Passing ... 54
5.0.3 Summary.. 55

5.1 CMI TO CBT LESSON ... 60
5.1.1 [Core].. 63
5.1.2 [Core_Lesson] .. 77
5.1.3 [Core_Vendor] .. 78
5.1.4 [Comments] ... 79
5.1.5 [Evaluation] .. 81
5.1.6 [Objectives_Status] ... 85
5.1.7 [Student_Data].. 91

AICC CMI Guidelines

Rev 3.0.1
24-Nov-99 xix CMI001

5.1.8 [Student_Demographics] .. 98
Country.. 98
5.1.9 [Student_Preferences].. 103

5.2 CBT LESSON TO CMI ... 112
5.2.1 [Core].. 114
5.2.2 [Core_Lesson] .. 117
5.3.3 [Comments] ... 118
5.2.4 [Objectives_Status] ... 120
5.2.5 [Student_Data].. 122
5.2.6 [Student_Preferences]... 126

5.3 ERROR AND DEFAULT CONDITIONS... 128
5.3.1 File Creation, File Read, and File Write Errors... 129
5.3.2 Data and File Format Errors.. 130
5.3.3 CBT and CMI System Mismatch Errors.. 132

6.0 COURSE STRUCTURE DATA.. 133

6.0.1 Basic Concepts .. 134
6.0.2 Course Building Blocks... 136
6.0.3 Levels of Complexity ... 137

6.1 THE COURSE FILE ... 143
6.1.1 [Course] Keywords ... 145
6.1.2 [Course_Behavior] Keywords .. 152
6.1.3 [Course_Description] ... 154

6.2 ASSIGNABLE UNIT FILE.. 155
6.3 DESCRIPTOR FILE ... 161
6.4 COURSE STRUCTURE FILE ... 166
FIELDS.. 166

6.4.1 Example 1.. 168
6.4.2 Example 2.. 169

6.5 OBJECTIVES RELATIONSHIPS FILE... 171
6.6 PREREQUISITES FILE.. 173

6.6.1 Assignable Unit and Objective Status ... 175
6.6.2 Logic Statements ... 177

6.7 COMPLETION REQUIREMENTS FILE ... 182
STRUCTURE_ELEMENT, REQUIREMENT, RESULT, NEXT, RETURN....................................... 185
6.8 STRUCTURE CONSIDERATIONS .. 188

7.0 LESSON EVALUATION DATA.. 191

7.1 COMMENTS FILE ... 193
7.2 INTERACTIONS FILE... 198
7.3 OBJECTIVES STATUS ... 213
7.4 PATH FILE ... 217

8.0 GROUP AND KEY WORD SUMMARY... 225

8.1 CMI/LESSON COMMUNICATION FILES .. 226

AICC CMI Guidelines

Rev 3.0.1
24-Nov-99 xx CMI001

8.2 COURSE STRUCTURE FILES ... 229
8.3 LESSON EVALUATION FILES.. 233

APPENDIX A: HTTP-BASED CMI PROTOCOL... 235

A.1 INTRODUCTION... 235
A.2 OVERVIEW.. 236

A.2.1 File-Based (Local) Launch and Control... 236
A.2.2 HTTP-Based Launch and Control ... 236
A.2.3 Assignable Unit Launching Sequence... 238
A.2.4 CBT/CMI Communication Session ... 239

A.3.0 DIFFERENCES BETWEEN HTTP-BASED AND FILE-BASED METHODS 240
A.3.1 Communication Differences ... 241
A.3.2 Course Structure Interchange Differences ... 242
A.3.3 Lesson Evaluation Differences ... 246

A.4.0 CBT ASSIGNABLE UNIT URL COMMAND LINE .. 247
A.5.0 HTTP COMMUNICATION... 250

A.5.1 Request HTTP Message Format ... 251
A.5.2 HTTP Response Message Format... 252

A.6 HTTP... 254
A.6.1 HTTP Standard... 254
A.6.2 AICC CMI Protocol (HACP) Commands... 254

APPENDIX B: API-BASED CMI COMMUNICATION... 256

B.1 INTRODUCTION ... 256
B.1.1 HTTP Implementation.. 256
B.1.2 API Implementation ... 257
B.1. Two Web Implementation .. 258

B.2 CONFORMANCE RULES ... 259
B.2.1 Obligation .. 259
B.2.2 CMI Responsibilities.. 260

LAUNCH ... 260
B.2.3 Content Responsibilities .. 262

B.3 API SET... 265
B.3.1 API General Rules ... 266
B.3.2 Handling Lists.. 266
B.3.3 Initialize ... 269
B.3.4 Finish ... 269
B.3.5 Get a Value .. 270
B.3.6 Set a Value ... 272
B.3.7 Send Cache to CMI .. 273
B.3.8 Determine Error Code ... 274
B.3.9 Obtain Text Related to Error ... 274
B.3.10 Determine Vendor-Specific Diagnostics.. 276
B.3.11 Security Request/Respond -- TBD.. 276

B.4 LMS TO LESSON COMMUNICATION... 277

AICC CMI Guidelines

Rev 3.0.1
24-Nov-99 xxi CMI001

B.5 LESSON TO LMS COMMUNICATION... 284
B.7 DATA TYPES.. 289
B.8 DATA COMPARISON... 292
B.9 COMBINED TABLES.. 298
COMBINED TABLE.. 298

GLOSSARY.. 301

INDEX .. 312

AICC CMI Guidelines

Rev 3.0.1
24-Nov-99 xxii CMI001

Blank

Rev 3.0
1-Sep-99 1 CMI001

1.0 INTRODUCTION

Purpose CMI systems manage both courseware and students in a training
environment. This document provides a description of how CMI systems
can do this without requiring specific CBT courseware. This document
formulates guidelines that when followed by the CMI and CBT system
builders, enable any CMI system to manage any CBT course. In addition,
there is a tutorial description of CMI functionality.

Scope This document describes

• How CMI systems in general function

• How CMI systems can pass course structure and content to other
CMI systems

• How CMI systems can work with different CBT systems

• How CBT systems can work with different data analysis tools

Organization This document includes three main specifications or guidelines. The
file-based specification and the CMI data model are defined in the first
8 chapters. Appendix A defines the HTTP guidelines for Web-based
CMI systems. Appendix B defines guidelines for API-based
(application programming interface) CMI systems.

Rev 1.4
5-Jan-96 2 CMI001

2.0 CMI OVERVIEW

Purpose This chapter provides a description of the functions of Computer-Managed
Instruction (CMI). CMI systems manage both courseware and students in
a training environment.

This chapter describes both basic and advanced features of CMI. It does
not attempt to describe any current commercially available CMI system.
The chapter is intended to provide introductory material and an overview
of what CMI systems can do.

It first outlines
• General Components of CMI

and then covers in greater detail, each of the following components.
• Course Structure Development
• Testing
• Roster Operations
• Student Assignment Management
• Data Collection and Management

AICC 2.0 CMI Overview CMI Guidelines

25-Oct-93 3 CMI001

2.1 General Components of CMI

Five CMI
components

A CMI system is more than a scheduler of CBT materials. CMI
systems are capable of managing both on-line (CBT) and off-line
instructional activities and tests. In general a CMI system can have
these five components:

1. A component used for the development of course structures.
(Section 2.2 Development of Course Structures)

2. A testing component used for the development and
administration of off-line and on-line tests. Testing can be
handled via

• the CMI system

• a separate test system (off line)

• traditional CBT.

Each of these must be able to report test results to the CMI
system. (Section 2.3 Testing)

3. A student rostering component enables entering student names
and demographic data. Student classes and class assignments
are also made with this component. (Section 2.4 Rostering
Operations)

AICC 2.0 CMI Overview CMI Guidelines

25-Oct-93 4 CMI001

4. A component which provides student assignment management
including:

• Administrator/instructor functions to oversee the day-to-day
training operations and intervene when necessary

• Assignment manager functions to control student
assignments based on sets of rules (both predetermined and
user-defined)

• Standard approach to lesson initiation to provide a method
for the CMI system to start-up lessons from different CBT
vendors

• Student logon functions to control and manage student
access, maintain student-accessible data records, and display
the student's current assignment

(Section 2.5 Student Assignment Management)

5. A component which provides student data collection and
management including:

• Functions to collect and maintain performance data on
students at all levels of courseware presentation

• Functions to provide standard analyses on performance data
collected

(Section 2.6 Data Collection and Management)

CMI terms Because there are many different interpretations of terms used to discuss
training activities, definitions of some of them appear in the Glossary
near the end of this document.

Terms that are used in this section include:

assignable unit
block
course
curriculum
hierarchy
lesson

AICC 2.0 CMI Overview CMI Guidelines

25-Oct-93 5 CMI001

2.2 Development of Course Structures

The heart of the CMI system is its course development component. In
order for CMI to manage student data and make student assignments it
must have a well defined structure for, and hierarchy of training materials

Lesson definition Course structure tools include a method to define a list of lessons and
their attributes. These tools work at the level of the smallest assignable
and trackable unit (i.e. lesson).

Lesson attributes can include the following:

• associated training objective(s) and classification
• test id(s)
• number of attempts allowed
• lesson type (on-line/off-line)
• lesson assignment rules
• need for instructor intervention if all attempts failed
• resources required
• equipment, classrooms, instructors, consumables (e.g.

workbooks)
• teaming requirements
• number of members of a team
• team resources
• remediation strategies and remedial lessons

AICC 2.0 CMI Overview CMI Guidelines

25-Oct-93 6 CMI001

Training
objectives

Course structure tools include a method to define training objectives.
This includes the objective identifier and a statement or description of
the objective.

Alternate
treatments

Lessons could have alternate treatments which could be assigned by the
CMI system. That is, lessons may behave differently depending on
information passed to them from the CMI system. For instance, a
lesson's alternate behaviors can be based on attempt number, student
attributes, past performance, or course developer criteria.

Lesson assignment
and availability

Flexible CMI systems are able to assign lessons from any CBT
development system, or lessons from a combination of several different
CBT development systems. Lesson completion data is passed back to
the CMI system for tracking and reporting.

Lesson availability indicators can be set on specific lessons so that once
completed, the student can select to view it again as reference material.

Hierarchies Course structure provides a method to group lessons into sequences for
assignment. This entails support for lesson hierarchies which allow the
course developer to define predecessor and successor relationships. An
example follows:

In this example, there are 7 lessons. Lesson 1 must be taken first.
Lessons 2,3,4 may be taken in any order but must be taken before lesson
5 and after lesson 1. Lessons 6 and 7 are called floating lessons and
may be taken at any time.

AICC 2.0 CMI Overview CMI Guidelines

25-Oct-93 7 CMI001

Block level The ability to define complex lesson hierarchies is important when
managing resources. It is important to define multiple paths through the
material to insure that bottlenecks are minimized. In addition to lesson
hierarchies, it is convenient to group lessons into a high level (blocks)
and apply hierarchies at both the lesson and block level. Using the
above hierarchy as block 1, an example would be:

Resources Resources can be defined and managed by the CMI system. Resources
are reusable (e.g. equipment) or consumable (e.g. paper handouts) with
reorder points defined. Classrooms are part of the resource pool and
scheduled along with the lessons using them. Resources such as
instructors have qualifications associated with them. The CMI system
may have a facility for maintaining qualification currency requirements
and status.

AICC 2.0 CMI Overview CMI Guidelines

25-Oct-93 8 CMI001

Scheduling outside
the CMI system

CMI systems are able to adapt to having some lessons in the course
hierarchy (e.g. prerequisite lessons) which can be scheduled by an
outside agency (e.g. a separate look-ahead scheduling system used to
layout simulator usage). This can be done by defining another lesson
attribute: on-demand and scheduled.

On-demand lessons are assigned by the CMI system if resources are
available.

Scheduled lessons are assigned by an outside agency.

The CMI system can be informed that the scheduled lesson is complete
by the student taking a CBT lesson or an instructor submitting an
evaluation/completion form.

Other functions Other functions can be supplied by a course structure component. The
CMI system can provide support for shifts which is useful in
maximizing utilization of resources. Support for a calendar provides a
method to define vacations, meetings, and course milestones. Support
for a student flow leveling algorithm provides smoother running lessons
and courses.

The concept of testing points in the course hierarchy, as opposed to
associating tests with the end of a lesson, provides a great deal of
flexibility. This allows testing to take place after a group of lessons is
completed and enables remediation before the student can continue.

Support for loading the course structure data-base from a data
interchange file provides a means to transfer course data between
different CMI systems and between task analysis systems and CMI
systems.

AICC 2.0 CMI Overview CMI Guidelines

25-Oct-93 9 CMI001

2.3 Testing

Testing is often done as part the lesson and is usually handled separately
as a function of the CBT system. Making test definition part of the CMI
system provides more flexibility in test administration, tracking, and
data analysis and does not preclude the use of the CBT system in
development of the test if it is to be on-line.

Test types Types of tests include mastery, performance checklists, and attitude
questionnaires. By making an attitude questionnaire a type of test, the
questionnaire can be evaluated using the item analysis facilities of the
testing system and not require a separate set of evaluation tools. Tests
are administered either on-line (from the CBT system) or off-line (e.g.
paper or performance). Off-line tests may be scored by an optical
scanner.

Test items Tests are composed of test items. Test items relate to objectives. CMI
systems support both norm-referenced and criterion-referenced tests.
For mastery tests, use of both item pools and test forms is useful.
Flexible test scoring strategies provide the following in addition to the
standard percent correct:

• Number of items within an objective to pass the objective

• Number of objectives within the test to pass the test

• Item weighting (especially useful for attitude questionnaires)

• Critical items (pass item to pass test)

• Critical objectives (pass objective to pass test)

Test assignment Tests are assigned as pre-tests or post-tests. Results then can assign
credit to lessons not requiring the student to take those lessons (e.g.
pretest to credit lessons containing material already mastered). Results
can also be used to de-credit lessons and enforce remediation of
completed material.

Test data The testing component can support data collection for item analysis. If
tests are administered via traditional CBT lessons, there are mechanisms
to dump item results into the CMI system for item analysis.

AICC 2.0 CMI Overview CMI Guidelines

25-Oct-93 10 CMI001

2.4 Roster Operations

Student
registration

CMI systems support registration or enrollment of a student in a course
or courses. This "roster" component provides for the definition of basic
student data (student id and student name) and the course(s) in which he
is enrolled. This component can also provide for definition of
additional student demographic data.

The CMI system may additionally provide mass-registration and/or self-
rostering. Mass-registration (or batch registration) provides a method to
register a whole class or learning center with a single transaction. Self-
rostering (or self-registration) is a method for the student to enroll
himself into a course without instructor/administrator intervention.

Student disenroll-
ment

Support is provided for disenrollment of a student from a course.
Disenrollment allows removal of a student from a course either with
retention of performance data for later analysis, or complete deletion of
data associated with the student.

Administrative
reports

Standard reports provide day-to-day administrative information in
addition to the ad-hoc kinds of reports provided by all data-base
management systems. Basic reports include:

• Course rosters (e.g. list of students in a specific course)

• Current assignment lists (current assignment of all students in a
course)

• Resource utilization (resources in use and resources available)

• Student performance history (basic performance data for each
lesson the student has completed)

• Course maps (graphical and descriptive)

Records transfer The administrator or instructor can transfer student data records into and
out of the CMI system from/to other sites if the training is
geographically distributed.

AICC 2.0 CMI Overview CMI Guidelines

25-Oct-93 11 CMI001

2.5 Student Assignment Management

Assignment
component

The assignment management component can perform the day-to-day
functions of the lesson assignment and performance recording. It can be
the primary interface to the various CBT systems providing presentation
of CBT lesson material.

Assignable unit This is where the concept of assignable unit (lesson) is important. The
assignable unit is the smallest unit the CMI system assigns and tracks.
A CBT system may allow smaller units for lesson material but results
must be reported back to the CMI system to correspond to these
assignable units.

Section contents The assignment component supports both assignment by the instructor
and by the system. It also provides access to the system by the student.
These topics are discussed under the following headings:

• Instructor/Administrator Functions
• System Assignment Management
• Student Logon

AICC 2.0 CMI Overview CMI Guidelines

25-Oct-93 12 CMI001

2.5.1 Instructor/Administrator Functions

Day-to-day
functions

In addition to lesson assignment and results recording, certain features
assist instructors/administrators in their day-to-day duties. These
include the following:

• Assignment certification/override.

• Instructor evaluations.

Assignment
certification/
override

When a student has taken the maximum attempts on a lesson and still
not passed the lesson, the student must still be able to move along in the
course. This can be done by certifying that the student has finished the
lesson. This can also be done by overriding the student to another
lesson.

Support should be provided to allow an administrator or instructor to
certify completion of a lesson and provide a status (i.e. pass/fail/
incomplete). In addition to a status a grade could also be certified if
appropriate.

Assignment override would allow an administrator or instructor to
change the system designated assignment to another lesson within a
course or to change the student's assigned course.

Instructor
evaluation

Since instructors play a major role in aviation training, CMI must
support easy, flexible instructor evaluation input (e.g. simulator time,
check ride). Instructors have the ability to easily define/modify
instructor evaluation forms. Types of data include the following:

• Evaluator ID

• Task evaluated

• Date/time of evaluation

• Task-level pass/fail decision

• Pass/fail decision of each objective

• Rating given each item in the objective

• Test of any instructor comments

• ID, data, and time of any instructor who overrode the evaluation

AICC 2.0 CMI Overview CMI Guidelines

25-Oct-93 13 CMI001

2.5.2 System Assignment of Student

Routing All CMI systems provide methods to rout students from one lesson to
another. This functionality in a CMI system is called the "router."

Basic
functions

The most basic assignment management functions are

• To record student progress on the current lesson.

• Determine the student's next assignment.

• Initiate that assignment.

More soph-
isticated

More sophisticated assignment managers determine
student assignments based on a student's individual
requirements. This provides a means to tailor the course
to the student's needs. At a minimum the system
provides the ability to skip lessons and go directly to
tests. Additionally, based on a pretest it can provide for
customized assignment strategies.

Most soph-
isticated

Another level of sophistication allows the assignment
manager to select lessons based on certain criteria such
as

• Student's past performance.

• Demographic data (e.g. language, experience).

• Airplane configuration (e.g. Pratt & Whitney vs. GE
engines).

Resource
allocation

Another component of an advanced assignment manager is the resource
allocation model. This model maximizes the use of resources based on
current utilization. The resource allocator has the ability to bottleneck
(stop progress in the course) a student if no lessons are available for
assignment due to lack of resources. Resource allocation algorithms use
resource weighting (e.g. assign most critical resources last or first) and
past resource availability data for determining the lesson assignment
rules.

AICC 2.0 CMI Overview CMI Guidelines

25-Oct-93 14 CMI001

student perfor-
mance data

The assignment manager maintains the student's performance data
records. These data records include the following information:

♦ lesson completions

♦ lesson transaction data
• attempt number
• time on lesson
• objective pass/fail status by objective id
• lesson pass/fail status
• lesson score (if applicable)
• lesson status (e.g. bottlenecked, in progress, complete, etc.)
• date started and date completed

♦ current resources if lesson currently in progress

♦ administrative information
• biographical/demographic data
• shift
• current classroom/instructor
• course completion data (e.g. pass/fail, dates)

AICC 2.0 CMI Overview CMI Guidelines

25-Oct-93 15 CMI001

2.5.3 Student Logon

Student access to
training

The CMI system provides a single point of entry for student access to
training materials. The main function of student logon is to display the
student's assignment and then to initiate that assignment (if it is a CBT
lesson or test.)

Security This component provides a level of security for the lesson materials by
displaying to the student only data to which he has access. This data
includes:

• Past performance history.

• Current assignment.

• Current position in course/curriculum.

• Graphical course map designating what is complete and what
remains.

• Possible other assignments.

Mail Student logon provides a central place for the student to send and
receive mail from instructors and other students. It also provide a note
facility.

Self rostering A student logon facility can also provide a central place for self
rostering (or self registration) of the student into a course if the
instructor has not already registered the student.

AICC 2.0 CMI Overview CMI Guidelines

25-Oct-93 16 CMI001

2.6 Data Collection and Management

Collection and
reporting

The data collection component provides automated collection and
management of data. This component also provides for both standard
and ad-hoc reports on the data collected.

Types of data The types of data collected can include the following:
• lesson and course summary data
• test item response
• student performance data

For
developer

The lesson and course summary data is used by the
instruction developer to evaluate the course, and
determine what changes can improve the lessons.

For
instructor

The student performance information is used by the
instructor to help him provide his students the
information they need to master the training material.

AICC 2.0 CMI Overview CMI Guidelines

25-Oct-93 17 CMI001

For both The test data is used by both the instruction developer
and the instructor.1

Levels of data There are really two levels of data in the CMI system.

• The first is the relatively concise lesson-level and objective-level
data required for assignment management and lesson routing.

• The second level of data is the more extensive test item and CBT
frame and path data required for course and curriculum analysis.

1 The term "instructor" is used here rather loosely. In this context, the instructor is the person
responsible for manageing the student. He may for instance, be called a site administrator
instead of an instructor.

AICC 2.0 CMI Overview CMI Guidelines

25-Oct-93 18 CMI001

However the CMI system is implemented, there should be two data
collection systems so that more extensive data (usually needed for initial
courseware validation) does not interfere with the relatively smaller
amount of data required for assignment management. By using separate
data collection systems, data can selectively be turned off and on, based
on evaluation and installation requirements.

Level-one data Level-one data would probably always be turned on. However, there
may be circumstances where it is desirable to turn off level one data, for
instance:

• Legal reasons for not keeping some performance data.

• Administrative reasons for not wanting data on individual students.

• Course to be used for review (no need for lesson routing or
performance data).

Level-two data Level-two data would probably be turned on for all lessons during
course small-group tryouts. Data would be evaluated and revisions
made to the indicated lessons in the course. Then the level-two data
collection would be turned off. When a new lesson revision was
implemented, data collection would be turned on for a small sample
size, data would be evaluated, and any indicated lesson revisions would
be made.

Data feed The data collected should be capable of being used with (or fed into)
any of the standard statistical packages such as SPSS or SAS. The data
collected should also be capable of being used by a data base
management system (DBMS). Preferably the CMI system should use a
relational data base management system (RDBMS) as the foundation for
its file management.

PTT data The evaluation component of CMI should be able to handle the types of
data generated by CBT-driven part-task trainers(PTTs). This is handled
relatively easily if data collection is structured so that evaluation data
from on-line tests, off-line tests, PTTs, and simulators all have the same
basic format. This significantly simplifies data handling and reporting.

Standard reports The data collected should be used to provide standard reports for both
courseware and student evaluation. More elaborate types of reporting
could be accomplished using the data and the ad-hoc reporting
capabilities of the DBMS or RDBMS. Standard reports should include
the following:

AICC 2.0 CMI Overview CMI Guidelines

25-Oct-93 19 CMI001

• First level: Student performance history reports

• Second level: Lesson and course level analysis reports

• Both levels: Test analysis reports

Student perfor-
mance reports

A tool for course instructors is a standard report on how well his
students are performing. This would contains individual student data on
each lesson by attempt.

The types of data that are useful for reporting include:

• Student ID or name

• Lesson identifier

• Lesson test identifier (if applicable)

• Attempt number

• Date completed

• Total time on attempt

• Lesson attempt pass/fail indicator

• Lesson attempt score (if applicable)

• Objectives failed

• Data collected.

Lesson/course
analysis reports

A good tool for the courseware evaluator is a report providing a high-
level overview of how each lesson in the course is progressing. This
high-level data is useful to flag lessons which should be looked at in
more detail (e.g. lessons with high failure rates, lessons containing an
objective with a high failure rate, or very long lessons).

The types of data that are useful for reporting includes:

♦ Lesson times and scores including means and standard
deviations

♦ Lesson failure rates
• Failure rates by lesson attempt
• Objective failure rates

♦ Lesson sample sizes

AICC 2.0 CMI Overview CMI Guidelines

25-Oct-93 20 CMI001

Test analysis
reports

Another good tool for the courseware evaluator is a report on how the
mastery tests are performing. Test item analysis reports can help
identify unreliable test questions. It can also show how well success or
failure of a test item correlates to success or failure on either the
objective or the entire test. However, item-objective and item-test
correlations are more conclusive when using standard forms of a test
rather than testing from an item pool.

Types of data that are useful for reporting include:

♦ Sample size

♦ Sample time period (date range)

♦ Cause of test failures
• Score
• Objectives failed
• Critical items or objectives

♦ Objective summary data (statistics by objective)
• Number of failures
• Mean score
• Standard deviation
• Number items in objectives/number need to pass objective
• Reliability coefficient
• Correlation of how performance on item relates to

performance on test

♦ Item summary data (statistics by item)
• Difficulty index (mean number students answering correctly)
• Number of failures
• Correlation of how performance on item relates to

performance on objective and performance on test
• Item choice distributions (how many times individual

alternatives were chosen by students)
• Unanticipated response statistics

25-Oct-93 21 CMI001

3.0 INTEROPERABILITY OVERVIEW

The problem In the past, authoring systems made the customer (an airline or
manufacturer) a captive of his own CMI system. If the customer wanted
to take advantage of CMI features in his courses, he had two choices.

1) Design his own CMI system with his authoring system tools, or
2) Purchase a CMI system from the same vendor who supplies the

authoring system.

In either case, the system works only for a single vendor's CBT lessons.
This is fine, until the customer aquires courseware designed with a
different authoring system, from a different vendor.

Why incompatible
courseware?

Several circumstances can motivate a customer to use CBT courseware
incompatible with his CMI system.

• A manufacturer delivers incompatible courseware with a new
airplane purchase.

• An airline purchases courseware from a vendor that used a
different authoring system.

• A customer decides to design new CBT with a different
authoring system.

AICC 3.0 Interoperability Overview CMI Guidelines

25-Oct-93 22 CMI001

Why a single CMI
system?

There are many reasons a customer may wish to continue use a single
CMI system instead of multiple systems to match his different CBT
lessons.

• Instructors are familiar with the current CMI system, and
training on a new system would take time. This impacts the
speed with which new courseware can be used, and the cost of
training how to use it.

• It is desirable to maintain the student's overall "look and feel" in
the airline's courseware. (The CMI/student interface provides a
significant part of the look and feel.)

• Maintenance of two different CMI systems is more complex
than maintaining a single system.

• The current CMI system has features and functions not available
with the CMI associated with the new courseware.

• There is a desire to add some new lessons designed with a
different authoring system to an existing course. A single CMI
system is desirable for the entire course.

Three aspects of
interoperability

This chapter describes the three aspects of CMI interoperability covered
in this guideline; and suggests reasons why these aspects of
interoperability are desirable.

The three aspects or types of interoperability discussed are:

• Moving course structure, behavior, and content
between systems

• Communication between a CMI system and a
lesson

• Storing student performance data

AICC 3.0 Interoperability Overview CMI Guidelines

25-Oct-93 23 CMI001

3.1 Moving Courses

Definition of
course

A course may be as simple as a few lessons to be viewed sequentially,
or it may be as complex as hundreds of lessons, some of which are
prerequisites to others and some of which may be experienced in any
order. Basically, courses have three components: instructional
elements, structure, and behavioral elements.

Course content The instructional elements include all the lessons, tests, and other
assignable units in the course -- often referred to as content. Frequently,
a description of the content also includes all of the objectives to be
mastered in the course.

Course structure The structure determines the order in which these are to be experienced
by each student. The order may as simple (as the implied order of a list
of lessons) or quite complex, depending on prerequisites, or even
student performance. The part of the CMI system that sequences the
course content, is referred to as the router.

Course behavior Behavior can be expressed as the progression logic philosophy for the
whole instructional material of a course. It is determined by relations
between CMI modes and lesson modes, or by a specific behavior
description. It is the progression logic within a lesson, and also the
progression logic from one lesson to another.

AICC 3.0 Interoperability Overview CMI Guidelines

25-Oct-93 24 CMI001

Reasons for
guidelines

There are at least two circumstances in which guidelines for moving
courses from one environment to another are useful.

• The first assumes a course is complete and is being transferred from
a vendor or manufacturer to an airline -- moving from one CMI
system to another.

• The second assumes a course is being designed in a tool other than a
CMI system -- moving course design into CMI.

From one CMI
system to another

Transferring the new course into the existing CMI system manually,
requires typing hundreds of lesson names, and duplicating all of the
sequencing information. This requires a significant number of man
hours. Having a standardized mechanism for describing course content
and structure, enables CMI systems to "ingest" a new course with
minimal manual effort.

From course
design into CMI

There are many tools, other than a CMI system, which may be used to
design a new course. One of the most common is a Task Analysis tool.
If a course design tool can output a standardized description of a course,
the CMI system can pull in the new course from that description. This
can save hundreds of man hours of retyping and inputting data.

AICC 3.0 Interoperability Overview CMI Guidelines

25-Oct-93 25 CMI001

Why keep
structure and
behavior?

Defining behavior has been part of the course design. Not keeping
behavior is a change of the instructional material, of its philosophy and
likely of its efficiency. This is, of course, should be avoided.

One example is that of a course designed to be taken sequentially, with
completion assumed when student has been exposed to all the material.
If changing CMI system makes all the material accessible freely it is
likely that student will skip some chapters, because they think they
know them, and maybe loose some instructional material. In this
example reliability of the course is impaired by not keeping the intended
behavior.

Reverse example is that of a course designed to be accessed freely, with
completion assumed when student has passed a set of tests. If changing
CMI system makes the progression sequential it is likely that students
will spend additional time on the course, compelled to follow sequences
that they would normally have skipped to go directly to the test. In this
example student acceptance of the course is affected by not keeping the
intended behavior

CMI from
vendor A

CMI from
vendor W

Task
Analysis
Tool

CMI from
vendor X

CMI from
vendor Z

Course
Structure

AICC 3.0 Interoperability Overview CMI Guidelines

25-Oct-93 26 CMI001

3.2 CMI Communication

CBT system
interoperability

The CMI should provide a standard approach to lesson initiation to
provide a method for interoperability of CMI and CBT systems. This
would allow a single CMI system to initiate lessons from different CBT
vendors. To accomplish this function the CMI system and CBT system
must communicate passing standard types of data. The following data are
need:

• data needed to be passed into a CBT system from CMI to start
the CBT lesson

• data needed to be passed from a CBT system to CMI to record
student performance and perform the next lesson routing or
assignment

• data needed for evaluation of a lesson such as item response
data, CBT simulation performance data, and lesson path data

This data flow can be pictured in the following manner:

CBT Lesson

CMI System

CMI

to

Lesson
CMI

to

Lesson

Lesson
Evaluation

Send Receive

Send

Lesson
Records

Student
Performance

Send

Student performance data may be considered level-one data as described
on page 18. The lesson evaluation data is the level-two data described
there.

AICC 3.0 Interoperability Overview CMI Guidelines

25-Oct-93 27 CMI001

3.3 Storing Student Data

Reasons for data Student performance data includes information that a CBT lesson or test
generates for a CMI system, or other analysis tool. Because the file can
be used by more than just the CMI system, lesson and student data that
is redundant for the CMI system needs to be included.

This information can be used for

• Student performance analysis. Data collection of the student's
interaction with the lesson. This helps to determine what the student
knows, and what he learns. Comparing individual student progress
with his peers gives a measurement of individual rate of learning.

• Item analysis. This can indicate how well an element of instruction
trains; or how well a test question measures student performance.
This enables quality control of the testing and instruction.

• Courseware analysis. The determination of how well the course
meets its training objectives. The determination of exactly where,
and why the courseware is not performing. This is related to the
item analysis.

AICC 3.0 Interoperability Overview CMI Guidelines

25-Oct-93 28 CMI001

• Attitude survey. The determination of how well the student likes the
courseware. How well the student feels the courseware is working.
This aids in measuring customer satisfaction.

• Path optimization. The determination of the best sequencing of
lessons and tests for a specific student. The determination of what
material may be skipped by a student. The determination of what
supplementary material or remediation is required by a student.
This is linked to the student performance analysis. This may also
support the concept of "progressive sign-off."

Why
interoperability

Standardizing the format of the student records permits multiple tools to
use the information.

• CMI. Some CMI systems are able to analyze or use more
information than is available in the standard Lesson-to-CMI file. By
having a standardized format for storing student performance data,
these CMI systems can all have access to the additional data,

• CMI. There are a number of reasons for using a single CMI system
for lessons made with different authoring systems. By having a
standardized format for storing student performance data, lessons
from different vendors can be used effectively under the same CMI
system.

• Analysis tools. There are a number of different tools that can be
used for analysis of student and lesson performance data. If the data
for analysis is stored in a standardized format, the different tools can
be used to analyze the information.

• Competition. By having standard interchange formats, the market
for analysis tools becomes much larger than just a single vendor's
customers. Vendors are therefore encouraged to create
sophisticated, easy-to-use analysis tools because of the payback of a
larger customer base.

25-Oct-93 29 CMI001

4.0 INTEROPERABILITY KEY: THE FILE

Background The key to interoperability is communication. CMI and CBT systems
must be able to communicate with each other in order to work together.
Communication is essentially a flow of data from one program to
another, or from one system to another.

The three data flows required for interoperability discussed in this
document are:

• CMI ⇔ CBT

• CMI ⇒ CMI

• CMI ⇒ Lesson-evaluation

AICC 4.0 Interoperability Key: The File CMI Guidelines

25-Oct-93 30 CMI001

4.1 Data Flow

CMI⇔⇔⇔⇔CBT data
flow

The data flow required for CMI and courseware systems can be pictured
in the following manner:

CBT Lesson

CMI System

CMI

to

Lesson
CMI

to

Lesson

Send Receive

There are two types of data in this flow.

• Data needed to be passed into a CBT system from CMI to start
the CBT lesson

• Data needed to be passed from a CBT system to CMI -- data to
enable the CMI system to record student performance and
perform the next lesson routing or assignment

To enable the data to be used by both the sender and receiver, it needs to
have a standard format and content. The format of the data is a file.
Details of this file format are discussed in this chapter. Subsequent
chapters in this document describe the contents of the different types of
files.

CMI to CMI data
flow

The following diagram shows the data flow for passing information on
course structure and student routing from one CMI system to another.

AICC 4.0 Interoperability Key: The File CMI Guidelines

25-Oct-93 31 CMI001

���������
���������
���������
���������������

������
������
������

�����
�����
�����
�����

For this information, several files have been developed. The number of
files required depends on the level of detail that is going to be passed
from one system to the next. The files contain ASCII data, but two
different formats are used. The details of the two different file formats
are found in this chapter.

CBT to Lesson-
evaluation data
flow

The following diagram shows data from a lesson being made available
to a number of tools that can be used for item analysis or lesson
evaluation.

AICC 4.0 Interoperability Key: The File CMI Guidelines

25-Oct-93 32 CMI001

��������
��������
��������
��������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

If data is to be accumulated over a number of lesson uses, there are three
ways the data can be accumulated:

1) A separate file for every time the lesson is used by a different
student.

2) A single file for a lesson, containing records of every student that
has used it. Each student as he finishes a lesson has his experiences
in the lesson appended.

3) A single file for a student, appending data for each lesson as the
student leaves it.

These guidelines use method three. The first approach would result in
hundreds of files to manage. The second could result in contention on a
network where more than a single student can be using the same lesson.

AICC 4.0 Interoperability Key: The File CMI Guidelines

25-Oct-93 33 CMI001

4.2 File Summary

Files overview The following is an overview of the files used for CMI interoperability:

♦ Data is passed as an ASCII file of one of two types

• Microsoft Windows INI also referred to as a group/keyword
file.

• Comma delimited ASCII also referred to as a table.

AICC 4.0 Interoperability Key: The File CMI Guidelines

25-Oct-93 34 CMI001

�����������
�����������
�����������
�����������

CBT Lesson

����������
����������
����������
����������
����������

������
������
������
������
������

�����
�����
�����
�����
�����

CMI System

CMI

to

Lesson

CMI

to

Lesson

Send Receive

�����
�����
�����

�����
�����
�����

Data
File

Data
File

Group/Keyword

PARAM.CMI
 or
 any.any

any.any

Group/Keyword

♦ CMI/CBT Lesson communication files
CMI to CBT file
• Name: PARAM.CMI or any other name as

described in Section 5.0.3.
• Contents: Information needed by a lesson to

function optimally.
• Type: Group/Keyword (Windows INI)
CBT to CMI file
• Name: any.any (name is defined by CMI)
• Contents: Information needed by a CMI system

to track student performance and make new
decision assignments.

• Type: Group/Keyword (Windows INI)

AICC 4.0 Interoperability Key: The File CMI Guidelines

25-Oct-93 35 CMI001

Completion
Requirements

Objectives
Relationships

Course
Description

Course
Structure

Assignable
Unit Prerequisite

Descriptor

♦ Course description from one CMI system to another
Course Description
• Name: any.CRS
• Contents: Basic information about a course,

including a textual description.
• Type: Group/Keyword (Windows INI)
Descriptor
• Name: any.DES
• Contents: System generated IDs, titles, and

descriptions of each element in the course:
Elements include Assignable Units, Blocks,
Objectives, and Complex Objectives.

• Type: Table (Comma Delimited)
Assignable Unit
• Name: any.AU
• Contents: Information about each assignable

unit, including data needed to launch the unit.
• Type: Table (Comma Delimited)
Course Structure
• Name: any.CST
• Contents: Course structure table (CST).
• Type: Table (Comma Delimited)
Objectives Relationships
• Name: any.REL
• Contents: Shows the relationship (if any) of each

objective in the course to 1) other objectives, 2)
blocks, and 3) assignable units.

• Type: Table (Comma Delimited)

AICC 4.0 Interoperability Key: The File CMI Guidelines

25-Oct-93 36 CMI001

Prerequisite
• Name: any.PRE
• Contents: Prerequisite table. Indicate

prerequisites for entering each assignable unit.
• Type: Table (Comma Delimited)
Completion Requirements
• Name: any.CMP
• Contents: Completion table. Indicates the

requirements for completion of each block or
complex objective whose completion cannot be
determined by the defaults.

• Type: Table (Comma Delimited)

AICC 4.0 Interoperability Key: The File CMI Guidelines

25-Oct-93 37 CMI001

CBT Lesson

PerformancePath

Comments

Interactions

Objectives
Status

♦ CBT Lesson Evaluation files
Comments
• Name: any.any (name defined by CMI)
• Contents: Comments made by student while

taking a lesson.
• Type: Table (Comma Delimited)
Objectives Status
• Name: any.any (name defined by CMI)
• Contents: Repeat of information that is in the

CBT to CMI file under the group
[Objectives_Status].

• Type: Table (Comma Delimited)
Interactions
• Name: any.any (name defined by CMI)
• Contents: Detailed information on each

interaction measured as the student takes a
lesson.

• Type: Table (Comma Delimited)
Path
• Name: any.any (name defined by CMI)
• Contents: A description of the path the student

took through the lesson. (What he experienced
first, second, third, and so forth.)

• Type: Table (Comma Delimited)
Performance
• Name: any.any (name defined by CMI)
• Contents: Information on student's performance

in complex simulations. Format yet to be
determined.

• Type: Table (Comma Delimited)

AICC 4.0 Interoperability Key: The File CMI Guidelines

25-Oct-93 38 CMI001

4.3 MS Windows INI Files

This file structure is based on the Microsoft WINDOWS *.INI files.
The INI file contains three types of data -- group, keyword, and
comment. The structure of the file and these data types are discussed in
the following sections.

AICC 4.0 Interoperability Key: The File CMI Guidelines

Rev 2.2
12-Oct-98 39 CMI001

4.3.1 File Structure

3 types Each item in the file is one of three types -- GROUP, KEYWORD, or
COMMENT. These are defined in Section 4.3.2.

Naming rules Group and keyword names are case insensitive. The names may include
alphanumeric characters and the underscore character, but may not
include spaces.

Group names are left justified and surrounded by brackets. Keywords
are left justified and followed by an equals sign (=). Comments are
lines whose first character is a semicolon.

Appearance in file Element name
[group] #
keyword=parameter#
; groups and keywords
; may have comments

Group
Valid Keyword
Comment

The # in this table means CR LF (0x0A 0x0D) (carriage return, line
feed). Comments must always be on a separate line from group names
and keywords.

Example This file was created by a Lesson to pass information to a CMI system.

[CORE]
LESSON_STATUS = Passed
LESSON_LOCATION = End
SCORE = 87
TIME = 00:25:30
; this is the core group of data
; this is the lesson performance data
; for a passed lesson that required a
; time of 25 minutes, 30 seconds and
; a score of 87

AICC 4.0 Interoperability Key: The File CMI Guidelines

25-Oct-93 40 CMI001

4.3.2 Comments

Definition Comments are text that is of use to a human viewing a file. They are
essentially invisible to a computer processing the data in the file. No
action is taken by the processor as a result of comments.

Format First character in the line is a semicolon. All characters following the
semicolon, up to and including the carriage return are considered part of
the comment.

Usage rules Comments may appear anyplace in any order in the file. Comments are
only possible in INI files, they are not available in the Comma
Delimited table files.

Example

; Comments can appear before
[CORE]
; and after group names.
; Comments can also appear before
SCORE = 87
; and after keywords.
TIME = 00:25:30
; Their existence has no impact on the
; processing of the file.

AICC 4.0 Interoperability Key: The File CMI Guidelines

Rev 1.5
26-Jan-96 41 CMI001

4.3.3 Groups

Concept Groups provide a mechanism for dividing a file into manageable
segments that are more easily accessed by data retrieval routines. They
also provide a means to organize a file of data into logically related
parts. This is helpful for human-processing of a file as well as computer
processing.

Definition Groups are logically related assemblies of data items, generally several
lines in length. A group extends from its group identifier to the next
group identifier, and may include multiple lines. Although groups may
contain keywords, they may not contain other groups.

All carriage returns and symbols between group identifiers may be
significant, depending on the definition of the specific group. However,
if a group contains keywords, then blank lines and extra carriage returns
are ignored.

Format A group is identified by its name enclosed by square brackets. The left
bracket is at the far left margin, or preceded by spaces or tabs. It cannot
be preceded by any other characters. It cannot be embedded in a line of
information. The name is case insensitive.

Spaces: The name must be an alpha-numeric string with no spaces,
inside square brackets. There should be no spaces either preceding or
following the name – in other words, no spaces should appear between
the brackets.

Usage rules Groups may appear in any order. Although groups may appear multiple
times in the file, only the first occurrence of the group is meaningful.

Group name examples:

[comments]
[OBJECTIVES_STATUS]
[student_demographics]

25-Oct-93 42 CMI001

Document
convention

When a group name appears in this document it is identifiable for one of
two reasons:

1) It is surrounded by brackets, for example:
[Objectives_Status]
[COMMENTS]
[student_data]

2) It is accompanied by the word "group", for example:
the Objectives_Status group
group COMMENTS
student_data group

25-Oct-93 43 CMI001

4.3.4 Keywords

Definition Keywords are names of data items that are limited in size to a single
line. This generally limits the data to 60 or 70 characters. The data
items associated with a keyword are referred to as keyword arguments
or keyword values.

Format Keywords appear at the left-hand margin followed by an equals sign.
Spaces before and after the equals sign are ignored. Keywords are case
insensitive.

Keyword
extensions

Each keyword within a single group must be unique. If keywords are
duplicated, only the first one is taken into account. To avoid duplicates,
when there are multiple instances of a keyword inside a group, each
keyword in the group has an extension. Keyword extensions consist of
a period and a simple two digit number, 00 through 99.

Example An examples of a group with multiple instances of a keyword requiring
an extension is the [Objectives_Status] group. It has multiple objective
ID's and a different status for each objective recorded in the group

[Objective_Status]
J_ID.01= AB112
J_Status.01 = Pass
J_ID.02= AB124
J_Status.02 = Pass
J_ID.03= AB196
J_Status.03 = Fail

25-Oct-93 44 CMI001

4.3.4 Keywords (cont.)

Argument format The first non-space character after the "=" identifies the beginning of the
data. Capitalization and spaces in the keyword data may or may not be
significant, depending on the definition of the data associated with a
specific keyword.

Examples:

Student_ID = JQH2142
OUTPUT_FILE=C:\STURECS\JQH2142.DTA
postal_code = 98124-2207

Usage rules Blank lines between keywords are ignored. Keywords are always
members of a group, although there may be groups without keywords in
them. An example of a group without a keyword is the [COMMENT]
group.

Keyword order The order in which the keywords appear within any group is irrelevant.
In this document, they are ordered alphabetically for the convenience of
the reader. However, it is important that the keyword appear within its
proper group.

Sometimes the same keywords are used in different groups. For
instance, in the same file there is a group called LESSON_DATA with a
keyword ID, and a group STUDENT_DATA with a keyword ID.
Obviously, these ID's are both different. They can only be different by
being members of a different group.

Like group names, keyword names may only appear once. If there are
multiple occurrences of the same keyword, only the first one is
significant.

25-Oct-93 45 CMI001

Document
convention

When a keyword name appears in this document it is identifiable for
one of two reasons:

1) It is followed by an equals sign, for example:
Score=
TIME=
max_time_allowed=

2) It is accompanied by the word "keyword", for example:
the score keyword
the keyword Max_Time_Allowed
time keyword

AICC 4.0 Interoperability Key: The File CMI Guidelines

Rev 2.1
18-Jun-98 46 CMI001

4.4 Comma Delimited ASCII

File flexibility Data stored in a comma delimited ASCII file can be imported easily into
virtually any off-the-shelf database product or spreadsheet. Many
programs use this format to exchange data.

This format is more than just a text file that is saved in ASCII form.
Comma delimited format supplies a simple mechanism for separating
records and fields, and for distinguishing data types.

Though some systems and applications may support delimiters other
than a comma, AICC files of this type require the use of a comma as a
separator.

Records and fields The format requires division of the data into records and fields. The
record is the data found on a single line. The field is the data that is
found between commas (comma delimited) on the line. There is no
fixed length for each field, and there is no fixed length for the records in
the file.

Critical characters There are certain characters that are important in this file format. The
format does not allow carriage returns within a record, double quotes
(") within any field, or commas within a number field. In this format,
carriage returns, double quotes, and commas are interpreted as record or
field delimiters. However, you can use commas and single quote marks
(') within text field (fields delimited by double quotes).

Embedded
carriage returns

One unique addition to the standard comma delimited ASCII file is
supported by this standard -- embedded carriage returns. Since
each field may be up to 255 characters in length, it may be desirable to
indicate where carriage returns are to be placed. Embedded carriage
returns are indicated by the characters "<CR>".

When fields with the embedded <cr> are placed by the CMI system into
a file in the INI format, the <cr> should be passed as an actual carriage
return. This enables a single field to contain several lines of group-
fields to contain group-keyword data that otherwise could not be held in
a single field.

AICC 4.0 Interoperability Key: The File CMI Guidelines

25-Oct-93 47 CMI001

Tables and files Notice in the example table below, there are labels for each column.
Each entry in a column corresponds to a field. Each row in the table
corresponds to a record. In the conversion of this table to a comma-
comma-delimited file, the name of each field
is gone. Only the field data itself is in the file.only appears once, in the
first record, at the top of the table.

Notice also, that empty field, or blank fields may have to exist in the
comma delimited file. In the third record there are two blank fields.
The first is an empty number field, and the second is an empty text field.
This is true because all records, or rows, in a file must have the same
number of fields.

Usage rules Some files will have different numbers of meaningful data elements in
each record. This means that records with fewer members must be
padded with blank fields at the end of the record, so that all records have
the same number of fields as the record with the most members.

This is necessary for some off-the-shelf database and spreadsheet
products to import a comma-delimited file.

Notice the first record in the file. It identifies the name of each field.
This identifies the order of the fields in any single file. Two files with
exactly the same contents would not have to have the fields in the same
order. The first record will always identify the order of all the fields to
follow.

In the examples below the first field in the first file is “Lesson_ID”.
The first field in the second file is “Lesson_File_Name”. The order in
which the fields appear is different, but the content is the same. The
CMI system must be able to interpret the two files, and determine that
the information in each is the same.

AICC 4.0 Interoperability Key: The File CMI Guidelines

25-Oct-93 48 CMI001

Example Table

Lesson ID Title Type Max Score Max_Time_
Allowed

Lesson
File Name

777APU-1 Auxiliary
Power Unit

Tutorial 38 00:18:00 APU.EXE

777EL-1 Electrical
Power, Part 1

Tutorial 41 00:23:00 ELEC1.EXE

777EL-2 Electrical
Power, Part 2

Practice ELEC2.EXE

Comma Delimited File with Same Contents

“Lesson_id”,”title”,”type”,”Max_Score”,”max_time_allowed”,”lesson_file_name”
"777APU-1","Auxiliary Power Unit","Tutorial",38,"00:18:00","APU.EXE"
"777EL-1","Electrical Power, Part 1","Tutorial",41,"00:23:00","ELEC1.EXE"
"777EL-2","Electrical Power, Part 2","Practice",,"","ELEC2.EXE"

Second Comma Delimited File with Same Contents

”lesson_file_name”,“Lesson_id”,”title”,”type”,”Max_Score”,”max_time_allowed”
"APU.EXE","777APU-1","Auxiliary Power Unit","Tutorial",38,"00:18:00"
"ELEC1.EXE","777EL-1","Electrical Power, Part 1","Tutorial",41,"00:23:00"
"ELEC2.EXE","777EL-2","Electrical Power, Part 2","Practice",,""

AICC 4.0 Interoperability Key: The File CMI Guidelines

Rev 2.1
18-Jun-98 49 CMI001

4.5 File Limits

Differences
between INI and
Table files

The following table summarizes some of the differences between the
Keyword/Group file (sometimes called an INI file) and the Comma-
Delimited Table file. It includes limits associated with the contents of
each.

Keyword/Group Table
Smallest unit of data keyword field
Size limit of the value for the
smallest unit (unless otherwise
specified in the field/keyword
description)

255 characters2 unless
otherwise specified

255 characters unless
otherwise specified

Frequency that the unit’s name
appears in file

keyword name appears every
time a keyword is used

field name appears only once,
at beginning of file

Number of small data units in
a line of data

one keyword per line many fields per line

Largest unit of data group record
Number of lines allowed for
large unit of data

each group can have many
lines

only one line per record

Size limit for large unit of
data.

limited only by the number
and size of the keywords3

limited only by the number
and size of the fields

Maximum size of one line of
data

255 characters plus length of
keyword and equals sign

unlimited (many times 255)

2 In this document one character is assumed to require one byte.
3 There are three exceptions: The [Comments] and [Core_Vendor] groups in the CBT/CMI
communications files and the [Course_Description] group in the *.CRS course interchange file.
These groups have a limit of 4096 characters.

AICC 4.0 Interoperability Key: The File CMI Guidelines

Rev 1.1
11-Apr-94 50 CMI001

5.0 CMI/LESSON COMMUNICATION

Two-way
communication

CMI and Lesson communication is two way. The CMI system sends
information to the lesson when it begins. The lesson sends information
to the CMI system when the lesson ends.

The information is sent in a file -- two files actually. The first file is
created by the CMI system, and the second is created by the lesson.

Chapter contents Section Subject
5.0.1 Launching CBT Lessons
5.0.2 Data Passing
5.0.3 Summary of launching a lesson &

passing data to it
5.1 Contents of CMI to CBT Lesson files

5.1.1 [Core]
5.1.2 [Core_Lesson]
5.1.3 [Core_Vendor]
5.1.4 [Comments]
5.1.5 [Evaluation]
5.1.6 [Objectives_Status]
5.1.7 [Student_Data]
5.1.8 [Student_Demographics]
5.1.9 [Student_Preferences]
5.2 Contents of CBT Lesson to CMI files

5.2.1 [Core]
5.2.2 [Core_Lesson]
5.2.3 [Comments]
5.2.4 [Objectives_Status]
5.2.5 [Student_Data]
5.2.6 [Student_Preferences]
5.3 Error and Default Conditions

5.3.1 File Creation, File Read, and File
Write Errors

5.3.2 Data and File Format Errors
5.3.3 CBT and CMI System Mismatch

Errors

AICC 5.0 CMI/Lesson Communication CMI Guidelines

25-Oct-93 51 CMI001

5.0.1 Launching CBT Lessons

The AICC CMI committee defines possible methodologies for the
initiation of a CBT system from a non-native CMI system. Note these
are possible methods but others do exist. CMI developers are
encouraged to use the method that is most efficient for their systems.

General
Requirements

CMI system developers must establish a mechanism to launch multiple
CBT vendor runtime systems. This mechanism will be different in the
DOS and Windows environment; however, two requirements will be the
same. They are:

• Students must have a single point of entry into and exit from the
CMI CBT CMI run sequence. CMI developers must insure
that the CBT application is well-behaved, meaning that CBT results
get reported back to CMI system for current assignment (i.e. CMI
initiates CBT, CBT runs, CBT returns to CMI with results of
lesson).

• The CMI system may allow multiple lessons to run concurrently.
However, once the lesson is begun, it is mandatory that the lesson
returns its results to the CMI system when it finishes.

AICC 5.0 CMI/Lesson Communication CMI Guidelines

25-Oct-93 52 CMI001

Example: DOS
Environment
Launch

This is an example at the conceptual level of how CMI can launch a
CBT application in a DOS environment. This is not an official AICC
recommendation or guideline. It is here to explain some of the
challenges of interoperability.

The initiation of a non-native CBT runtime from a CMI application can
be done in a number of ways. One method requires the use of a very
small DOS shell executable to be resident during the execution of the
CBT to ensure return of control to the CMI application and necessary
cleanup of CBT-related memory resident code. Another task of the
shell executable would be to clean up after the exiting CMI application
by unloading drivers. The small DOS shell could also initiate the CBT
application in one of several ways:

• Execute .bat file identified to run the desired lesson
• Load the necessary drivers and initiate the CBT application through

command-line parameters.
• Perform a combination of the above where the shell has a skeleton

.bat file and modifies it on the fly with lesson specific command line
parameters

The shell executable performs these types of activities prior to startup of
the CBT system:

• Unload all CMI system device drivers, clear all I/O addresses and
interrupts, clear environment variables, clear out extended memory

• Load CBT device drivers, set system environment variables, and all
other functions needed to ready the system for CBT execution

The shell executable would perform these types of activities after return
from the CBT system and prior to startup of the CMI system:

• Unload all CBT system device drivers, clear all I/O addresses and
interrupts, clear environment variables, clear out extended memory

• Initiate the CMI system including loading device drivers and all
other functions needed to ready the system for CMI execution

AICC 5.0 CMI/Lesson Communication CMI Guidelines

25-Oct-93 53 CMI001

 This is a diagram of flow of control.

Example:
Windows
Environment
Launch

This is an example at the conceptual level of how CMI can launch a
CBT application in a Windows environment. This is not an official
AICC recommendation or guideline. It is here to explain some of the
challenges of interoperability.

One method for launching a non-native Windows CBT application from
a Windows CMI application is similar to that used in the DOS
environment. The use of a CMI shell would be used to replace the
Windows Program Manager. This would be done by changing the shell
command in the SYSTEM.ini file from PROGMAN.EXE to the CMI
shell executable developed. This allows the CMI shell to control the
sequence of programs and insure that CBT will be a well-behaved
application and return to CMI to update student records.

AICC 5.0 CMI/Lesson Communication CMI Guidelines

Rev 1.2
19-Jul-94 54 CMI001

5.0.2 Data Passing

Data files are the means to
a) Initiate non-native CBT lessons and
b) Report results back to the calling CMI system work.

To do this there must be a common understanding of when, where, and
how these data files are created, read, and deleted.

The data flow, with the inclusion of the files, looks like this.

CBT Lesson

CMI System

CMI

to

Lesson

CMI

to

Lesson

Lesson
Evaluation

Send Receive

Send

Data
File

Data
File

Lesson
Records

Student
Performance

Send

AICC 4.0 Interoperability Key: The File CMI Guidelines

Rev 3.0
1-Sep-99 55 CMI001

5.0.3 Summary

Essentially this is how the interoperability works:

CMI creates file,
launches CBT

1. The CMI system creates a file containing the data necessary to
start-up a CBT lesson. The file is created just prior to the initiation
of the CBT system.

Due to the temporary nature of the file, it normally resides on the
local station, either the hard disk or floppy (if there is no local hard
disk). However, if there is no requirement for local storage, the
CMI system can decide where the file should reside.

CMI to CBT file
name

The name of the CMI-to-CBT lesson data file must be made
available to the CBT application at CBT system initiation. Three
methods may be used to accomplish this.

• For some DOS applications, a DOS environment variable,
PARAM$CMI, can be set by the CMI runtime and queried by
the CBT runtime. PARAM$CMI contains a complete file name,
including the drive and path, for the CMI-toCBT data file.

• An additional command line parameter containing the CMI to
CBT lesson data file name can be processed by the CBT
runtime.

• A standard file, PARAM.CMI, can be used which contains the
CMI-to-CBT lesson data and which is placed by the CMI system
in the directory specified in the Microsoft Windows "windir"
environment variable. Examples of this directory are
"c:\windows" for Windows95/98 and "c:\winnt" for Windows
NT.

CMI developers must support all three recommended methods for
CMI to CBT lesson data filename passing. CBT system developers
must use one of the recommended methods for receiving the CMI to
CBT lesson data file name.

AICC 5.0 CMI/Lesson Communication CMI Guidelines

Rev 1.2
19-Jul-94 56 CMI001

In addition, CMI systems must also support both a vendor CBT
system handling courseware using the CMI-to-lesson data file and
courseware developed before the guidelines were instituted (e.g.
courseware not expecting the CMI-to-lesson data and not generating
the lesson-to-CMI data). Therefore, the CMI system generating the
command line must provide for the following two situations:

• The case where the CBT runtime expects an additional
command line parameter containing the CMI-to-lesson file name

• The case where older CBT courseware is to be run that cannot
process the extra command line parameter

This could be done in several ways and it is up to CMI developers to
determine the best methodology for their system.

CBT reads CMI-
created file

2. Once the CBT system is initiated, it reads the data file created by the
calling CMI system and then immediately deletes it.

Some lessons may not need this input file simply because student
information is not necessary for the lesson. If the data is needed,
the CBT system must use one of the recommended methods for
receiving the CMI-to-CBT data filename.

CBT creates file 3. The CBT system must create a file containing data to be passed back
to CMI so that the CMI system can update its student performance
data and make the next assignment (perform routing activity).

The CMI system passes in the file name for the lesson-to-CMI data
file as part of the CMI-to-lesson core data.

The creation of the CBT lesson to CMI data file with an attempt
status of NOT ATTEMPTED must be one of the first activities that
the CBT system performs. This is necessary so that the CMI
system will know the correct status of the CBT lesson and will be
able to recognize a resume/bookmark status versus a completion.

AICC 5.0 CMI/Lesson Communication CMI Guidelines

Rev 1.2
19-Jul-94 57 CMI001

In order for a CBT systems resume/bookmark capability to work
properly, the calling CMI system must be able to distinguish
between possible reasons for leaving the CBT lesson, such as the
following.

• A resume/bookmark condition.

• Lesson completion.

• Student logout.

Some CMI systems may wish to distinguish other reasons for
leaving a lesson as well.

The existence of the CBT-to-CMI data file with a completion
indication of NOT ATTEMPTED (i.e. ATTEMPT STATUS = NOT
ATTEMPTED) signals to the CMI system that the lesson is to be
resumed and no new assignment (routing activity) is to be generated.

Some of the data stored in the CBT-to-CMI data file will need to be
stored temporarily in the CMI system and then fed back into the
lesson. This data includes core keywords such as
LESSON_LOCATION that the CMI system sends back to the
lesson in a resume situation.

This means that the CMI system will allocate a certain amount of
temporary storage for each student when a lesson resume/ restart is
encountered to store data that will need to be feed back into the
lesson.

The data that is to be stored over a restart/resume condition is shown
in the following table.

CBT Lesson CMI
Group Keywords

CORE Lesson_Location
Lesson_Status
Score
Time

CORE_LESSON lesson dependent

The stored data is to be fed back into the lesson in the following
groups and keywords.

CMI CBT Lesson

AICC 5.0 CMI/Lesson Communication CMI Guidelines

Rev 1.2
19-Jul-94 58 CMI001

Group Keywords
CORE Lesson_Location

Lesson_Status
Score
Time

CORE_LESSON lesson dependent
CORE_VENDOR vendor dependent

The temporary restart/resume data stored in the CMI system can be
deleted by the CMI system upon lesson completion or change of
assignment.

In order to report back student performance on the lesson, the CBT
system must set the core data fields in the CBT-to-CMI data file at
lesson completion. These data items are defined in Chapter 5.

If there is no CBT-to-CMI data file, the CMI system assumes the
following:

• Current lesson is complete

• No time or score data exists so the CMI system should
use its normal defaults (score="" and time=0)

• The next lesson (routing activity) should be determined
and assigned

CBT finishes, CMI
reads CBT-
created file

4. The CMI system reads the CBT-to-CMI data file and using the
information passed from the CBT lesson updates applicable student
data kept by the CMI system and determines the next student
assignment or routing activity.

In the case of a resume/restart of an existing lesson, the CMI will
temporarily store the core group data fields identified in item 3
above. When the lesson is to be re-initiated the CMI sends those
applicable data items with the temporarily stored data. This means
the CMI system will be expected to allocate a certain amount of
temporary data for each student over a lesson restart/resume. AICC
recommends an allocation of 512 bytes per student needed only if
the lesson is interrupted.

AICC 5.0 CMI/Lesson Communication CMI Guidelines

Rev 1.2
19-Jul-94 59 CMI001

It is the responsibility of the CMI system to delete the CBT-to-CMI
data file either immediately after determining the student's next
assignment/routing activity or in such a manner as to insure that the
disk space is managed properly and that there isn't leftover data
confusing the lesson.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.7
2-Jan-97

60 CMI001

5.1 CMI to CBT Lesson

Description This is information that a typical lesson obtains from a CMI system to
enable it to perform the functions expected of it. In this documentation,
core items are listed first, followed by the optional group names
alphabetically. (In the file, group names may be in any order.) After
each group name are the keywords (if any) which are appropriate for
that group. (In the file, keywords may appear in any order inside their
group, unless their description defines a required sequence.)

Required item A required item is one which must always be provided by the CMI
system to be AICC compliant. Required items are those which a lesson
may always depend upon being available. The lesson may or may not
use the core items, but they are available if needed. Most core items are
required. The exception is the Lesson_Mode keyword in [Core] which
is optional.

Optional item Optional items are group and keyword data which may be needed by a
lesson to perform optimally. However, the lesson must be constructed
such that there is a default to be used if these optional items are not
provided by the CMI system.

Group Names and Keywords Function of Group
[Core]

Student_ID
Student_Name
Output_File
Credit
Lesson_Location
Lesson_Status
Path
Score
Time

Lesson_Mode

Information required to be
furnished by all CMI systems.
What all lessons may depend upon
at start up, from any AICC
compliant CMI system.

Optional item in this group.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.8
3-Mar-97 61 CMI001

[Core_Lesson]
Data is undefined and may be
unique to each lesson.

Information held by the CMI
system for the lesson since last
student attempt.

[Core_Vendor]
Data is undefined and may be
unique to each vendor.

Required information for some
lessons. Must be furnished by
CMI system.

[Comments]
no key words
<delimited>

E-Mail type information that an
instructor or administrator wants
to send to a student.

[Evaluation]
Course_ID
Comments_File
Interactions_File
Objectives_Status_File
Path_File
Performance_File

File names and locations where the
lesson should store the lesson
evaluation information.

[Objectives_Status]
J_ID.1
J_Score.1
J_Status.1

Information on each objective in
an assignable unit.

[Student_Data]
Attempt_Number
Mastery_Score
Max_Time_Allowed
Time_Limit_Action
Lesson_Status.1
Score.1

Information on student
performance expectations.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.8
3-Mar-97 62 CMI001

[Student_Demographics]
City
Class
Company
Country
Experience
Familiar_Name
Instructor_Name
Job_Title
Native_Language
State
Street_Address
Telephone
Years_Experience

Personal information on student.
Characteristics relating to student
before course entry.

[Student_Preferences]
Audio
Language
Lesson_Type
Speed
Text
Text_Color
Text_Location
Text_Size
Video
Window.1

Student selected options collected
in previous lessons, or previous
instances of this lesson.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.7
2-Jan-97

63 CMI001

5.1.1 [Core]

Definition This is a required group that must contain the following keywords.
Student_ID
Student_Name
Output_File
Lesson_Location
Credit
Lesson_Status
Path
Score
Time

The group may optionally contain the following keyword.
Lesson_Mode

Example
[core]
student_ID = CAM-1942
student_name = McArthur, Christopher A. Jr.
OUTPUT_FILE= C:\CMI\STURECS\cam-1942.dta
lesson_location=0
credit=credit
lesson_mode=Sequential
lesson_status=complete
Path=C:\CMI\STUDENT\CAM-1942\
time=00:23:15
score=93

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.1
11-Apr-94 64 CMI001

5.1.1 [Core] keywords

Student_ID= Definition Unique alpha-numeric code/identifier that refers to a
single user of the CMI system.

Format Up to 255 alpha-numeric characters with no spaces.
Additional legal characters in a student_id are the dash
(or hyphen) and the underscore. Periods are illegal
characters. Case insensitive.

Examples student_id=Jack_Hyde1
student_ID = JQH-1942
STUDENT_ID= jack1991-3

Student_Name= Definition Normally, the official name used for the student on the
course roster. A complete name, not just a first name.
There is a separate keyword in the group
Student_Demographics for the student's nickname --
keyword Familiar_Name.

Format Last name, first name and middle initial. Last name and
first name are separated by a comma. Spaces in the
name must be honored.

Examples Student_name=Whiplash, William R.
STUDENT_NAME= Grey, Jane S.
student_name = McArthur, Christopher A. Jr.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 2.1
18-Jun-98 65 CMI001

5.1.1 [Core] keywords (cont.)

Output_File= Definition Name (including path) of the file which the lesson must
construct if it is to pass information back to the CMI
system

Examples output_file =d:\students\jqh\dtafile.txt
OUTPUT_FILE= C:\CMI\STURECS\jqh-1942.dta

Lesson_Location= Definition This corresponds to the lesson exit point passed to the
CMI system the last time the student experienced the
lesson.

This keyword provides one mechanism to let the student
return to a lesson at the same place he left it earlier. In
other words, this keyword can identify the student's exit
point and that exit point can be used by the lesson as an
entry point the next time the student runs the lesson.

Data
format

Implementation dependent. The CMI system simply
holds this data and then returns it to the lesson when the
student is re-entering it. Whatever the lesson passes back
to the CMI system is returned. The format matches
whatever the lesson expects -- the format is created by
the lesson.

The first time a student enters the lesson, or if there is no
preferred starting point Lesson_Location may be an
empty string or blank.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.2
19-Jul-94 66 CMI001

5.1.1 [Core] keywords (cont.)

Credit= Definition Indicates whether the student is being credited by the
CMI system for his performance (pass/fail and score) in
this lesson.

There are two possible arguments for this keyword,
Credit or No-credit.

• Credit. This means that the student is taking the
lesson for credit. The CMI system is telling the
lesson that if the lesson sends data to the CMI
system, the CMI system will credit it to the student.

• No-credit. This means that the student is taking the
lesson for no credit. His current credit, if any (for
instance a score of 80 and status of passed) will not
be changed by his performance in this lesson. The
CMI system is telling the lesson that if the lesson
sends data to the CMI system it will not change the
student’s accreditation.

Default If an unrecognized or unanticipated CREDIT argument is
received, then Credit is assumed by the lesson.

Format One of two words may be the argument for this keyword.
Credit
No-credit

Only the first character is significant. Capitalization is
not significant.

Examples Credit=c
Credit = no-credit
credit=N

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 3.0
1-Sep-99 67 CMI001

5.1.1 [Core] keywords (cont.)

Lesson_Mode= Definition Identifies the lesson behavior desired after the launch.

Lesson
behavior

Many lessons have a single “behavior.” Some lessons
however, can present different amounts of information,
or present information in different sequences, or present
information reflecting different training philosophies
based on an instructor’s or designer’s decision. Designers
may enable lessons to behave in a virtually unlimited
number of ways. This standard supports the
communication of three parameters that may result in
different lesson behaviors.

Browse. The student wants to preview the materials, but
not necessarily challenge the courseware for a grade.

Normal. This indicates the courseware should behave as
designed for a student wanting to get credit for his
learning.

Review. The student has already seen the material at
least once and been graded..

Lesson behaviors are designer defined. Behaviors not on
this list may be used in lessons that are compliant with
these guidelines. As additional behavior modes are
defined by lesson designers it is recommended they be
added to this list by submitting a request to the chairman
of the AICC CMI subcommittee.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 3.0
1-Sep-99 68 CMI001

5.1.1 [Core] keywords (cont.)

Default If an unrecognized or unanticipated LESSON_MODE is
received, then the mode the lesson designer considers
normal is assumed by the lesson. Whatever strategy or
behavior preferred by the designer is the default.

Format The vocabulary of legal values is:
Browse
Normal
Review
Only the first letter is significant. Capitalization is
ignored.

Example 1

Example 2

Lesson_Mode = B
; Student wants to browse the material.

lesson_mode=Normal

Example 3 LESSON_MODE= Review

Example 4 ; In the following example (illegal argument) the lesson
; should assume browse behaviors because the first
; letter is a "b".

lesson_mode = begin

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 3.5
2-Apr-01 69 CMI001

5.1.1 [Core] keywords (cont.)

Lesson_Status= Definition This is the current student status as determined by the
CMI system, and sent to the lesson when it is launched.

Six statuses are possible. If it is the student's first
attempt at the lesson the status may be not attempted,
passed, or failed and shall include the “a” flag.

•••• Passed (or p or pass) Necessary number of
objectives in the lesson were mastered, or the
necessary score was achieved. Student is considered
to have completed the lesson and passed.

•••• Completed (or c). The lesson may or may not be
passed, but all the elements in the lesson were
experienced by the student. The student is
considered to have completed the lesson.

For instance, passing may depend on a certain score
known to the CMI system. The lesson knows the raw
score but not whether that raw score was high enough
to pass.

•••• Failed (or f or fail). The lesson was not passed. All
the lesson elements may or may not have been
completed by the student.

•••• Incomplete (or i). The lesson was begun but not
finished.

•••• Browsed (or b). The student launched the lesson
with a CMI mode of Browse on the initial attempt.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 3.0
1-Sep-99 70 CMI001

5.1.1 [Core] keywords

Lesson_Status=
(cont.)

•••• Not attempted (or n or na). Incomplete implies that
the student made an attempt to perform the lesson,
but for some reason was unable to finish it. Not
attempted means that the student did not even begin
the lesson.

Maybe he just read the table of contents, or lesson
abstract and decided he was not ready. Any
algorithm within the lesson may be used to determine
when the lesson moves from NOT ATTEMPTED to
INCOMPLETE.

Determine
status

The way in which the status decision is made, is defined
as follows:
• Normally the lesson determines its own status and

passes it to the CMI.
• If there is a mastery score in the assignable unit file

(xxxxxxx.AU), the CMI can change status to either
Pass or Fail depending on the student's score
compared to the mastery score.

• If there is a completion requirements file
(xxxxxx.CMP), the CMI shall change the status of a
lesson based on the defined completion requirements.

• If a conflict exists, completion requirements has
precedence over mastery score.

• If there is no mastery score or completion
requirements file, the CMI cannot override lesson-
determined status.

• If credit=n, there is no change in status, with one
exception. If the lesson_mode is "browse", the status
may change to "browsed", even with credit=n.

Flag There are two possible flags: Ab initio and Resume.
They required in the circumstances described below.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 3.0
1-Sep-99 71 CMI001

Ab initio (A or a). This indicates it is the first time the
student is entering the lesson. Because the student may
have passed all the objectives in a lesson by completing a
pre-test, the status of Not Attempted is not a reliable
indicator. That is, a lesson may be Passed without the
student having ever seen it. Consequently, there is a
need for this flag to indicate when the student is entering
the lesson for the first time.

Resume (R or r). This indicates that the student was in
the lesson earlier, and when he exited the lesson, the
lesson_status had a suspend flag. The student is
resuming a suspended lesson.

No Flag. The absence of a flag indicates that it is a
normal re-entry.

Argument
format

A word, character or phrase optionally followed by a
coma and an additional character or word.. Only the first
character is significant in each word.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 3.0
1-Sep-99 72 CMI001

5.1.1 [Core] keywords

Example 1 Lesson_Status = failed
; Student failed the lesson the last time he was in it.

Example 2 Lesson_Status = N,A
; Student is entering the lesson for the first time.
; The “A” flag along with the Not attempted status is
; required.

Example 3 lesson_status = p
; Student passed the lesson when he was in it previously
; Absence of the A flag indicates this is not his first time
; in the lesson. Absence of the R flag indicates he
; exited the lesson normally when he passed it (i.e. he
did
; not generate a Suspend flag).

Example 4 lesson_status=i,r
; Student did not finish lesson. When he left, a suspend
; flag was generated. The Resume flag is therefore
; required.

Example 5 lesson_status = p,a
; Student has demonstrated mastery of the contents
; of the lesson – probably by passing a pre-test. This
; is his first time into the lesson, as indicated by the
; Ab initio flag.

Example 6 lesson_status=i
; Student did not finish lesson. When he left, a logout or
; some other flag may have been generated. No suspend
; flag was created.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 3.0
1-Sep-99 73 CMI001

5.1.1 [Core] keywords

Path= Definition The Path keyword indicates to the CBT lesson where
additional files specific to student progress and lesson
status may be written. The directory indicated by the
Path keyword is specific to an individual student.

Usage rules A separate directory (or storage management for all the
files in that directory) must be maintained for each
student.

Examples Path=C:\CMI\STUDENTS\CAM-194\

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 3.0
1-Sep-99 74 CMI001

5.1.1 [Core] keywords

Score= Definition Indication of the performance of the student during his
last session in the assignable unit.

This score may be determined and calculated in any
manner that makes sense to the program designer. For
instance, it could reflect the percentage of objectives
complete, it could be the raw score on a multiple choice
test, or it could indicate the number of correct first
responses to the embedded questions in the AU.

Optional
values

The score may be followed by two values: a maximum
and minimum.

Maximum
This is the largest score the student could have achieved
with the interactions that he experienced.

Minimum
This is the smallest score that the student could have
achieved with the interactions he experienced.

Advantages
of 3 scores

There are several advantages to providing a Score,
Minimum, and Maximun:

1) It removes all ambiguity about the scoring range,
allowing a CMI to exploit the data in any way desired.

2) It minimizes the complexity of managing and
comparing summary data between learning or testing
modules, and moves it from the application to the server.
For example, it would allow comparing the score of
adaptive tests that result in different raw score maxima
because they vary in the number of questions asked.

3) It allows a test to return a raw score, with all the
precision needed; for example 456,800,200.

4) It can degrade gracefully to handle 2-item score values
where the min_score is assumed to be 0.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 3.0
1-Sep-99 75 CMI001

5) It can degrade gracefully to handle 1-item score values
where the max_score is assumed to be 100 and the
min_score is assumed to be 0.

Format Decimal number or blank for all three values. Values
separated by commas. The order is significant: Score,
Maximum, Minimum.

Usage rules When the file is created for a student's first attempt,
SCORE ="". That is, the score is a blank "Score=". For
additional attempts the score reflects what was recorded
on the student's last previous attempt.

Examples SCORE= 79
; Probably a percentage result.
SCORE= .79
; Certainly a percentage result.
Score = 8, 10, 0
; Raw score of 8 with a maximum of 10.
; Percentage score would be 80%.
score=1.3, 2
; Raw score of 1.3 with a maximum of 2.
score= 4, , -1
; The maximum is omitted here.. Raw score of 4 with
; a minimum of –1.
Score=
; Either the student's first entry or he did not attempt
; any scored interactions in his previous use of the lesson.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 3.0
1-Sep-99 76 CMI001

5.1.1 [Core] keywords

Time= Definition Total time of all uses of an assignable unit by a single
student. Accumulated time of all the student sessions in
the lesson.

Data
format

HHHH:MM:SS.S Integer number representing hours,
followed by a colon, an integer from 00 to 59
representing minutes, followed by a colon and a decimal
or integer from 00 to 59.99 representing seconds.

Usage rules Three numbers, separated by colons, are always required,
even if only seconds or minutes are represented.

Examples TIME= 00:29:00
; Student spent 29 minutes in lesson.
time=1:27:00
; Student spent 1 hour 27 minutes in lesson.
time= 00:01:27
; Student spent 1 minute 27 seconds in lesson.
time= 00:04:00
; The student spent 4 minutes in the lesson during the
; current attempt.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 2.2
12-Oct-98 77 CMI001

5.1.2 [Core_Lesson]

Definition Unique information applicable to a launching lesson. Normally this is
the group used by the lesson for restart information. This is normally
data that is created by the lesson and stored by the CMI system to pass
back to the lesson for the next time the lesson is run.

The CMI system must set aside space for this group for each lesson for
each student. It stores this data and returns it to the lesson when it is run
again. The CMI system shall retain this data as long as the student is in
the course.

Format Lesson unique. The only limitations on this data are:

1. Data must be transferred in ASCII format. The lesson may then
convert it to any form that it requires.

2. To avoid over-burdening the CMI system this group should be
limited to 4096 bytes of data. If more space is needed for this data,
then this group can name a file containing complete data for the
lesson.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

18-Jun-98 78 CMI001

5.1.3 [Core_Vendor]

Definition Unique information required by the lesson's design. Without this
information, a lesson may not execute. The contents of this group is
defined in the Assignable Unit structure file: xxxxxxxx.AU

Format The format and content of this information is described in the
Assignable Unit structure file as the Core Vendor field on page 160.
The CMI system needs to store this information and pass it to each
lesson at the time of launch.

Core_Lesson vs.
Core_Vendor data

There are several significant differences between core_lesson and
core_vendor data.

• Core_Vendor data when available is always passed to a lesson.
Core_Lesson data is only available for a restart.

• Core_Vendor will always be the same for a given lesson.
Core_Lesson may be different depending on any restart factors that
are stored in the group.

• Core_Vendor data is limited to 4096 characters. If more space is
needed for this data, then this group can name a file containing
complete data for the lesson.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

18-Jun-98 79 CMI001

5.1.4 [Comments]

Definition Optional group. Instructor comments directed at the student that the
lesson may present to the student when appropriate.

Format Any number of lines with any alphanumeric and special characters. The
carriage returns are not used at the end of every line in the file. Word-
wrap is allowed. Carriage returns, when in a string should be honored
by the lesson (application).

For example:

...abc
def

when displayed to the student becomes

...abcdef

while:

...abc<cr>
def

when displayed to the student becomes

...abc
def

Usage rules Any number of comments may be included and comments may be
nested. Each comment is tagged -- that is, it is preceded and followed
by a special series of characters. The first comment is preceded by a
less-than sign, the number one, and a greater than sign -- <1>. The end
of the comment is indicated by <e.1>. Each comment is numbered
sequentially with Arabic numerals in its tag. The tags do not appear on
screen to the student.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

18-Jun-98 80 CMI001

5.1.4 [Comments] keywords (cont.)

Size 4096 bytes.

Example 1 [Comments]
<1>The trainer session following this lesson will be at 13:15 Thursday
instead of 9:00.<e.1><2>If you have passed practice session three in the
simulator, please skip the Practice section in this lesson.<E.2>

Example 2 [Comments]
<1> On the pretest, you missed questions which indicate you should
concentrate on the following topics:
AC power generation
DC power sources
AC power delivery
AC power usage <e.1>

AICC 5.1 CMI to CBT Lesson CMI Guidelines

18-Jun-98 81 CMI001

5.1.5 [Evaluation]

Definition Several files may be created to hold student-performance/lesson-
evaluation information. This group enables the lesson to know if data
should be collected, and where to put the collected data.

The "file" keywords indicate a path and file name for the data. If the
keyword is sent to the lesson with a null (blank) argument, it tells the
lesson not to collect that data. A blank argument turns off data
collection. Not having any keyword causes the lesson to revert to its
default settings for data collection.

Keywords Course_ID
Comments_file
Interactions_file
Objectives_status_file
Path_file
Performance_file

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.2
19-Jul-94 82 CMI001

5.1.5 [Evaluation] keywords (cont.)

Course_ID= Definition Alpha numeric sequence that uniquely identifies a
course.

The course identifier is required in all of the output file
formats. Since any given lesson may be used in several
courses, it is necessary for the CMI system to tell the
lesson (assignable unit) which course it is in. This ID is
the first field in all of the evaluation output files.

Argument
format

Alphanumeric characters. All characters, beginning with
the first printable character after the equals sign are
significant.

Examples Course_ID = A320-FT-002

Course_ID = FT747-302-4

Course_ID = 767-224-4.MT

Comments_file= Definition The full identifier of the file containing the student's
comments on a lesson. The name, includes path and
extension, as listed by the operating system when disk
contents are requested.

Argument
format

Alphanumeric characters. Includes path name. May be
case sensitive, depending on the operating system.

Usage rules Including this keyword, but with a null value, turns off
comment collection.

If the file already exists, the lesson opens it and appends
its information. If the file does not exist, the lesson
creates it.

Example Comments_file = C:\STUDTA\CSF003.CMT

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.2
19-Jul-94 83 CMI001

5.1.5 [Evaluation] keywords (cont.)

Interactions_file= Definition The full identifier of the file containing the record of the
student's interactions on a lesson. (Interactions are
described in Chapter 7) The name, includes path and
extension, as listed by the operating system when disk
contents are requested.

Argument
format

Alphanumeric characters. Includes path name. May be
case sensitive, depending on the operating system.

Usage rules Including this keyword, but with a null value, turns off
interaction data collection for this session.

If the file already exists, the lesson opens it and appends
the new information. If the file does not exist, the lesson
creates it.

Example Interactions_file = C:\STUDTA\CSF003.INT

Objectives_status_
file=

Definition The full identifier of the file containing information on
the objectives covered in a lesson. The name, includes
path and extension, as listed by the operating system
when disk contents are requested.

Argument
format

Alphanumeric characters. Includes path name. May be
case sensitive, depending on the operating system.

Usage rules Including this keyword, but with a null value, turns off
objectives data collection for this session.

If the file already exists, the lesson opens it and appends
its information. If the file does not exist, the lesson
creates it.

Example Objectives_status_file = C:\STUDTA\CSF003.OBJ

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.2
19-Jul-94 84 CMI001

5.1.5 [Evaluation] keywords (cont.)

Path_file= Definition The full identifier of the file containing information on
the path through the lesson taken by the student. The
name, includes path and extension, as listed by the
operating system when disk contents are requested.

Argument
format

Alphanumeric characters. Includes path name. May be
case sensitive, depending on the operating system.

Usage rules Including this keyword, but with a null value, turns off
collection of path information for this session.

If the file already exists, the lesson opens it and appends
its information. If the file does not exist, the lesson
creates it.

Example Path_file = C:\STUDTA\CSF003.PTH

Performance_file= Definition The full identifier of the file containing information on
the student's performance in complex scenarios, such as
simulations.

Argument
format

Alphanumeric characters. Includes path name. May be
case sensitive, depending on the operating system.

Usage rules Including this keyword, but with a null value, turns off
collection of performance information for this session.

If the file already exists, the lesson opens it and appends
its information. If the file does not exist, the lesson
creates it.

Example Performance_file = C:\STUDTA\CSF003.PFC

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.2
19-Jul-94 85 CMI001

5.1.6 [Objectives_Status]

Definition An objective identifier and an indication of what the student has done
on previous attempts on the lesson. The student can pass, fail, or not
attempt an objective. These objectives are those associated with the
current launching lesson, not all the objectives in the course/curriculum.

Three keywords are available in this group:

J_ID.1
J_Score.1
J_Status.1

Example [objectives_status]
J_ID.1 = APU1684
j_status.1 = passed

AICC 5.1 CMI to CBT Lesson CMI Guidelines

23-Oct-00 86 CMI001

5.1.6 [Objectives_Status] keywords (cont.)

J_ID.5= Definition An internally, developer defined, lesson-specific
identifier for an objective. This is the same identifier as
the one that appears in the courseware interchange
Descriptor file in the field labeled “Developer ID.” (The
definition for Developer ID is on page 164.)

Keyword
format

Each J_ID keyword has an extension to make it unique.
The extension is a period followed by a number -- from
1 to 9999. This number should not be zero padded.
(.0009 for instance is an illegal extension for the number
.9)

Data format Alpha-numeric string. No internal spaces.

Usage rules There may be multiple ID’s in the group
Objectives_Status but each must have a unique
extension.

Since the value of each J_ID is an a string representing
objective ID internally defined in the CBT courseware,
the CMI system needs to provide a means storing and
referencing these (lesson specific) ID’s.

In addition , the CBT courseware use must include a list
of these internally defined objectives in the course
structure Descriptor (.DES) file.

Examples J_ID.1 = A1373

AICC 5.1 CMI to CBT Lesson CMI Guidelines

23-Oct-00 87 CMI001

5.1.6 [Objectives_Status] keywords (cont.)

J_Score.1= Definition Indication of the score obtained by the student after each
attempt to master an objective. A maximum and
minimum may accompany score.

A semicolon separates multiple attempts. Commas
separate maximum and minimum values. If the CMI
system only stores a single score for each objective, this
status reflects the student's last attempt on the objective.

Keyword
format

The SCORE keyword has an extension to make it
unique. The extension is a period followed by a one to
four-digit number -- from 1 to 9999. This number should
not be zero padded. (.0009 for instance is an illegal
extension for the number .9)

Optional
values

The score may be followed by two values: a maximum
and minimum.

Maximum
This is the largest score the student could have achieved
with the interactions that he experienced.

Minimum
This is the smallest score that the student could have
achieved with the interactions he experienced.

Data
format

One or more numbers that may include a decimal point,
separated by commas or semicolons. Numbers separated
by commas are Score, Maximum, Minimum in that
order. Scores separated by semicolons represent
different uses of the objective.

If multiple attempts (or uses) are being stored, the score
on most recent attempt is first. The earliest or first
attempt appears last.

Usage rules Must have the same extension as its corresponding ID or
J_ID. Indicates the score of the corresponding objective.

5.1.6 [Objectives_Status] keywords (cont.)

AICC 5.1 CMI to CBT Lesson CMI Guidelines

23-Oct-00 88 CMI001

Example 1

Example 2

J_Score.1 = 2,2
; during student's first attempt, a score of 2 was
; achieved, and the maximum possible was 2.

J_ID.1= 1
J_Score.1 = 87
J_ID.2= 2
J_Score.2 = 3;5
; during first attempt, student scored 5, on his
; second attempt he scored 3

Example 3 J_Score.1 = 3,5;2,5
; during the first use the student scored 2 out of a
; possible 5. During the second use of the objective,
; he scored 3 out of a possible 5.

Example 4 J_Score.1 = 6.5,10,-3
; The student scored 6.5 out of a possible 10, and
; could have done as poorly as to have scored -3.

Example 5 J_Score.1 = 9.5,10,0;6.3,10,0
; On the first use of the objective, the student scored 6.3
; out of a possible 10. Minimum would have been 0.
; On the last (second) use, the student scored 9.5 out of
; a possible 10.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

23-Oct-00 89 CMI001

5.1.6 [Objectives_Status] keywords (cont.)

J_Status.4= Definition Indication of the status of an objective at the time a
lesson is launched. Five statuses are possible.

•••• Pass (or p or pass) - The student has mastered the
objective.

•••• Complete (or c) - The student has gone through all
segments of the lesson related to the objective. He
may or may not have passed. The CMI system may
make the judgment of whether he passed based upon
his score.

•••• Fail (or f). Failed may be followed by a comma and
an integer number indicating the number of times the
objective has been failed.

•••• Incomplete (or i) - The student has not gone through
all the segments of the lesson related to this
objective.

•••• Not attempted (or n or NA) - The student has not
gone through any of the segments of the lesson
related to this objective.

•••• Browsed (or b). The student launched the lesson
with a CMI mode of Browse on the initial attempt.

Keyword
format

Each STATUS keyword has an extension to make it
unique. The extension is a period followed by up to a
four-digit number -- from 1 to 9999. This number should
not be zero padded. (.0009 for instance is an illegal
extension for the number .9)

Data
format

Single word or letter. Only the first character is
significant.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

23-Oct-00 90 CMI001

5.1.6 [Objectives_Status] keywords (cont.)

Usage rules Must have the same extension as its corresponding ID or
J_ID. Indicates the status of the corresponding objective.

There should never be more than one status keyword
associated with a single objective. However, if more
than one status does appear after an objective, then the
first status to appear is the one that is assumed correct by
the lesson.

If there is no corresponding ID or J_ID, the status is
ignored.

If there is no status associated with an objective ID, then
the assumed status is na (not attempted).

Examples j_id.3 = 1987
j_status.3=p
j_id.6 = 1942
J_STATUS.6 = f
J_ID.92 = 1847
J_Status.92 = N

AICC 5.1 CMI to CBT Lesson CMI Guidelines

23-Oct-00 91 CMI001

5.1.7 [Student_Data]

Definition Information in this data is to support customization of a lesson based on
a student's performance. For instance, the lesson could provide a
different entry point to the student based on this data.

Notice the difference between Student_Data and
Student_Demographics. Demographics data describes the student
before he begins the course. He brings it with him into the course.
Student_Data is what the CMI system learns of the student after he
begins and as he progresses through the course. Student_Data describes
the student's performance in the course.

There are currently 6 keywords defined for this group.

Attempt_Number
Lesson_Status.1
Mastery_Score
Max_Time_Allowed
Score.1
Time_Limit_Action

AICC 5.1 CMI to CBT Lesson CMI Guidelines

23-Oct-00 92 CMI001

5.1.7 [Student_Data] keywords

Attempt_Number= Definition Number of times the student has been in, or previously
used the lesson. If the CMI system is launching the
lesson for the student for the first time, the
attempt_number = 0.

Note: A session may be defined as the number of uses of
an assignable unit until it is completed or passed. A
completed assignable unit represents an attempt at that
assignable unit. Students may be allowed to take
assignable units more than once for credit. The multiple
completions of assignable units are attempts of that
assignable unit.

Because of the definition for the attempt_number
keyword in this document, systems following these
guidelines are reporting session numbers (as session is
defined in this note.)

Data
format

Integer number from 0 to 100.

Examples attempt_number = 3
Attempt_Number=16

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 3.0
1-Sep-99 93 CMI001

5.1.7 [Student_Data] keywords (cont.)

Lesson_Status.1= Definition Indication of the status of the lesson after each attempt. If
the CMI system only stores a single status for each
lesson, this status reflects the student's last use of the
lesson.

Possible statuses are described with the Lesson_Status
keyword on page 69.

Keyword
format

The LESSON_STATUS keyword has an extension to
make it unique. The extension is a period followed by a
one to four-digit number -- 1 to 9999. This number
should not be zero padded. (.0009 for instance is an
illegal extension for the number .9)

Usage rules Normally, there is a separate LESSON_STATUS for
each attempt indicated by the ATTEMPT_NUMBER. If
the student has never looked at the lesson before, the
attempt status number is 0 -- Lesson_Status.0. The first
LESSON_STATUS following the ATTEMPT_
NUMBER is for the last time the lesson was attempted
by the student.

If the ATTEMPT_NUMBER is greater than the number
of LESSON_STATUS keywords following, or different
than the Lesson_Status extension, then the first
Lesson_Status line is assumed for the last or most recent
attempt before the current lesson launch.

Example 1 Attempt_number = 3
Lesson_Status.3 = failed
Lesson_Status.2 = incomplete
Lesson_Status.1 = not attempted

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 3.0
1-Sep-99 94 CMI001

5.1.7 [Student_Data] keywords (cont.)

Example 2 Attempt_Number=4
Lesson_Status.4=p
Lesson_Status.3=p
Lesson_Status.2=i,r
Lesson_Status.1=f,l
; In this example, the author of the lesson decides that
; once a student achieves "Pass," in all subsequent
; attempts at the lesson the student retains his
; "Passed" status.

Mastery_Score= Definition When the lesson score is greater than or equal to the
mastery score, the student is considered to have passed,
or mastered the content. In some cases, the lesson does
not know what this passing score is, because it is
determined by the CMI system (the human controlling
the CMI system actually).

When the mastery score is not known but needed by the
lesson, it is passed to the lesson by the argument of this
keyword.

The mastery_score for each lesson is determined by the
Mastery_Score field in the appropriate record in the
Assignable Unit file, as described in Section 6.2, page
155.

Argument
format

Integer number. (-32,768 to +32,767)

Usage rules For a CMI system to support Mastery_Score, it must be
able to change the lesson status based on the score passed
to it from the lesson. Just passing a Mastery_Score to a
lesson does not constitute full support for this feature.

Examples mastery_score = 75
Mastery_Score = 100
MASTERY_SCORE=5

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 3.0
1-Sep-99 95 CMI001

5.1.7 [Student_Data] keywords (cont.)

Max_Time_
Allowed=

Definition The amount of time the student is allowed to have in the
current attempt on the lesson. See time_limit_action for
the lesson's expected response to exceeding the limit.

Max_Time_Allowed is determined by the value of this
field in the Assignable Unit file described in the Course
Structure chapter in Section 6.2, page 155.

Data
format

Hours, minutes, and seconds separated by a colon.
hh:mm:ss

Usage rules Three numbers separated by colons are always required
to express time.

Examples max_time_allowed = 0:14:30
Max_Time_Allowed = 2:03:00
MAX_TIME_ALLOWED = 1:09:00

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 3.0
1-Sep-99 96 CMI001

5.1.7 [Student_Data] keywords (cont.)

Score.1= Definition Indication of the score obtained by the student after each
previous attempt. A maximum and minimum may
accompany score.

Commas separate maximum and minimum values. If the
CMI system only stores a single score for each lesson,
this score reflects the student's last attempt in the lesson.

Keyword
format

The SCORE keyword has an extension to make it
unique. The extension is a period followed by a one to
four- digit number -- from 00 to 99.1 to 9999. This
number should not be zero padded. (.0009 for instance is
an illegal extension for the number .9)

Format One or more numbers that may include a decimal point,
separated by commas. Numbers separated by commas
are Score, Maximum, Minimum in that order.

Example 1

Example 2

Score.1 = 2,3
; during student's first attempt, a score of 2 was
; achieved out of a possible 3..
Score.2 = 3,3
; in the second, and latest use of the lesson, the student
; scored 3 out of 3.

score.1= 87
score.2 = 93
score.3 = 100

Example 3 Score.1 = .75

Example 4 Score.1 = .75,1,0

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 3.0
1-Sep-99 97 CMI001

5.1.7 [Student_Data] keywords (cont.)

Time_Limit_
Action=

Definition Tells the lesson (or test) what to do when the
max_time_allowed is exceeded. There are two
arguments for this keyword.

• What the lesson should do -- Exit or Continue
• What the student should see -- Message or No

message
Time_limit_action is determined by the value of this
field in the Assignable Unit file described in the Course
Structure chapter in Section 6.2, page 155.

Format Two letters, words, or phrases separated by a comma.
The possible arguments are

Exit (or E or e)
Continue (or C or c)
Message (or M or m)
No_Message (or N or n)

Only the first letter of each word or phrase is significant.
Capitalization is ignored.

Examples time_limit_action = Exit, Message
; The lesson presents a message to the student
; indicating he has exceeded the time
; limit in the lesson, and then exit or quit.
Time_Limit_Action=E,N
; The lesson quits or exits with no message to the
; student. He jumps to the CMI environment.

time_limit_action = N,C
; When the student exceeds his time limit in the
; lesson, no message is presented, the lesson
; continues. Notice that the order in which the
; keywords appear is not significant.
TIME_LIMIT_ACTION = continue, message
: The student receives a message when he exceeds
; the time limit. The lesson continues
; after presenting the message.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.7
2-Jan-97 98 CMI001

5.1.8 [Student_Demographics]

Definition Attributes of a student, which he possessed prior to entering the course.
Some of this information could be of use to a lesson. Each item of
information is preceded by a keyword and therefore limited to a single
line. Typical demographic data includes the student's name, job title,
years of experience, and native language.

Each individual data item in this group is optional. As many or few of
the following as desired may be used. Additional demographic items
may be added that are unique to an implementation. However, if any of
the items listed in this guideline are used, they should appear in the form
and format described.

Keywords The following keywords are defined for this group.

City
Class
Company
Country
Experience
Familiar_Name
Instructor_Name
Job_Title
Native_Language
State
Street_Address
Telephone
Years_Experience

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.7
2-Jan-97 99 CMI001

5.1.8 [Student_Demographics] keywords

City= Definition Portion of student's current address.

Format Alphabetic string. May include spaces.

Examples city = Seattle
City= Montreal
CITY =Long Beach

Class= Definition A predefined training group to which a student belongs.

Format Alphabetic string. May include spaces.

Examples class = BO767-21
CLASS=FT.767-1991-06

Company= Definition Student's place of employment.

Format Alphabetic string. May include spaces.

Examples COMPANY= BOEING
company= United Airlines
Company = Skywest Airlines, Ltd.

Country= Definition Portion of student's current address.

Format Alphabetic string. May include spaces.

Examples COUNTRY = USA
Country=Canada
Country= New Zealand

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.7
2-Jan-97 100 CMI001

5.1.8 [Student_Demographics] keywords (cont.)

Experience= Definition Information on the student's past that might be required
by a lesson to determine what to present, or what
presentation strategies to use.

For instance, a pilot may have experience flying a DC-9,
737-200, and 727. This would indicate no "glass
cockpit" experience. Consequently extra information on
electronic displays might be appropriate.

Format Alphabetic string. May include spaces. May be lesson
design specific.

Examples experience = 737-200, DC-9, 727
Experience = 4000-4j
; Unique code. Student has 4000 hours experience in
; 4 engine jet transports.

Familiar_Name= Definition In some cases, a lesson may attempt to be more personal
by using a student's name in its feedback. This provides
a mechanism for the CMI system to inform the lesson
how it should refer to the student.

Format Alphabetic string. May include spaces.

Examples familiar_name = Clint
Familiar_Name= Mr. Gregory

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.7
2-Jan-97 101 CMI001

5.1.8 [Student_Demographics] keywords (cont.)

Instructor_Name= Definition Name of the instructor responsible for the student's
understanding of the material in the lesson.

Format Last name, first name and middle initial. Last name and
first name are separated by a comma. Spaces in the
name must be honored.

Examples Instructor_Name= Henry Willoughby
instructor_name = Mark Ashtonbury Jr.
instructor_name = Haight, Ash

Job_Title= Definition Title of the position the student currently has in the
company which employs him.

Format Alphabetic string. May include spaces.

Examples job_title = Pilot
Job_Title = Captain
JOB_TITLE=First Officer
job_title = Vice President Engineering

Native_Language= Definition The language with which the student is most familiar.
This may not be the preferred language for the
instructional delivery.

Format Alphabetic string. May include spaces.

Examples Native_Language=English
NATIVE_LANGUAGE = FRENCH
native_language = Dutch

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.7
2-Jan-97 102 CMI001

5.1.8 [Student_Demographics] keywords (cont.)

State= Definition Portion of student's current address. Segment of a
country, also called a province.

Format Alphabetic string. Spaces are significant.

Examples state = Illinois
State = British Columbia

Street_Address= Definition Portion of student's current address.

Format Alphabetic string. Spaces are significant.

Example 1993 West Oak Street

Telephone= Definition Telephone number of a student. May or may not include
area and country codes. May be work phone or home
phone.

Format Alphanumeric string. Spaces are not significant.

Examples telephone = (514) 239-6115
Telephone=61 93 20 12
TELEPHONE = 011-44-482-663622

Years_Experience
=

Definition Number of years the student has performed in current or
similar position.

Format Integer number.

Examples Years_Experience = 3
years_experience=15
YEARS_EXPERIENCE = 8

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.8
3-Mar-97 103 CMI001

5.1.9 [Student_Preferences]

Definition Frequently lessons are designed to allow students to select options that
are appropriate for subsequent lessons. For instance, a lesson may have
audio with a software volume adjustment. When the volume is adjusted
it may be desirable to pass that volume preference to a lesson taken the
next day.

Usage rules A CMI system must be prepared to hold this information and pass it on
to each lesson as long as the student remains in the course. One set of
preferences per student is needed.

The CMI holds each keyword and argument (the CMI may ignore blank
lines), then passes it to the next lesson. This enables the creation and
use of student preferences that are not yet defined in this standard.

Although there is no limit on the amount of space that may be needed
by Student_Preferences, the lesson author should keep in mind the limit
of 32K for the PARAM.CMI file.

Lesson behavior A lesson using preference keywords only needs to pass changes back to
the CMI system. The CMI is responsible for maintaining the
accumulated set of preferences and passing the latest version of all
preference keywords to each lesson when it is launched.

Key words The following key words are defined for this group.

Audio
Language
Lesson_Type
Speed
Text
Text_Color
Text_Location
Text_Size
Video
Window.1

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.5
26-Jan-96 104 CMI001

5.1.9 [Student_Preferences] Keywords

Audio= Definition Audio may be turned off, or its volume controlled. The
keyword arguments indicate whether the audio is turned
off, or on.

Value
format

Digit from -1 to 100.

-1 is off
Any minus number is an off command.

0 is a no-change status.
The lesson uses its defaults or the status of the
audio remains the same as the last lesson taken on
the terminal.

1 to 100 is volume level.
1 is soft, 100 is loudest possible.

Examples audio= -1
AUDIO = 33

Language= Definition For lessons with multi-lingual capability, this keyword
should be used to identify in what language the
information should be delivered.

A student may prefer to experience a lesson in a
language other than his native language.

Theoretically a lesson could make decisions based on the
contents of Language and Native_Language. For
instance, if Language does not equal
Native_Language, the audio could be played back
slower than normal.

Format Alphabetic string. May include spaces.

Examples Language=English
LANGUAGE = FRENCH
language = Dutch

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.5
26-Jan-96 105 CMI001

5.1.9 [Student_Preferences] Keywords (cont.)

Lesson_Type= Definition Student preferences set in one type of lesson may be
meaningless when applied to another type of lesson.

Assume for instance that there are two different
authoring systems used to develop two lessons, one
following the other. If the second lesson receives student
preferences for Text_Color from the first lesson, the
meaning could be entirely different. Text_color of white
for the first lesson could be defined as 16. Color white in
the second lesson could be defined as 256,256,256.

To verify that the parameters are applicable to a lesson, a
data needs to be established to indicate the type of lesson.
The lesson receiving student preferences can then
determine if the preferences are applicable to itself.

The following keywords are sensitive to lesson type:

• Text_Color

• Text_Location

• Text_Size

• Video

Value
format

Alpha-numeric. No spaces. At least three characters.

Usage rules The type identifier should be at least three characters in
length. This will ensure a very low probability that two
lessons of different types will have the same type
identifier by coincidence.

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.8
3-Mar-97 106 CMI001

5.1.9 [Student_Preferences] Keywords (cont.)

Speed= Definition Lessons may sometimes be difficult to understand
because of the pace. This is especially true if the
language of the CBT presentation is not the students first
language. In such cases, understanding can be helped by
slowing the lesson flow.

Sometimes, a student may be bored or irritated because
the lesson seems so slow. In such cases comprehension
and interest level may be increased by increasing the
speed of the lesson delivery.

This parameter allows retaining the student’s preference
for faster or slower lesson flow.

Value
format

Digit from -100 to 100.

-100 is slowest pace available in the system

0 is a no-change status.
The lesson uses its defaults. Lesson moves at its
normal speed.

100 is maximum pace available in the system.

Example 1

Example 2

speed= -100

; If a system only has three speeds, slower, normal, and
; faster, any positive number (+1 and above) would
; result in the use of the faster speed.
SPEED = 33

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.5
26-Jan-96 107 CMI001

5.1.9 [Student_Preferences] Keywords (cont.)

Text= Definition In a lesson designed for audio, it may be possible to turn
off the audio, and view the audio content in a text
window. Or it may be possible to leave the audio on, and
request that the text be presented simultaneously with the
audio. Or it may be possible to make the text disappear
so that only the audio and the screen graphics are
available.

This keyword identifies whether the audio text appears in
the lesson.

Value
format

One of three digits.

-1 text is off, not shown

 0 no change in status. Use default.

 1 text is on screen, shown to student

Examples Text = -1
text=0
TEXT = 1

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.5
26-Jan-96 108 CMI001

5.1.9 [Student_Preferences] Keywords (cont.)

Text_Color= Definition When there are preference options for a student, text
color and text background may be selections available.
This keyword enables storing these two parameters.

Value
format

Alpha-numeric. Text color first, then background color,
separated by a comma. Note that color definitions
cannot be separated by a comma. An R,G,B definition of
color for instance, could not be written 256,123,215. It
would have to have a different separator, like
256:123:215 or 256-123-215.

The first time this command is used, its argument may be
0. However, when a lesson is run and the student selects
a new text color and background, those colors are passed
to the CMI system as TEXT_COLOR. They are saved in
whatever format is provided by the lesson. Then it is
passed back to the next lesson as the data of this
keyword.
.

Usage rules 0 (zero) is a no change status -- that is no change from
the lesson default colors. Any other argument is system
unique.

If only a single color is defined, it is the assumed
character color, and background color remains
unchanged.

Examples text_color = 234-89-196,0-0-0
Text_Color = Light Blue, Dark Blue
Text_Color = Light green, Black
Text_color = 0

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.5
26-Jan-96 109 CMI001

5.1.9 [Student_Preferences] Keywords (cont.)

Text_Location= Definition When a lesson has text on screen in a window, it may be
possible for the student to move the text window to a
location of his choice. This keyword allows that
preferred location to be passed to subsequent lessons.

Value
format

Alpha-numeric. 0 (zero) is a no change status -- that is
no change from the default in the lesson. From the
student's view there may be a significant change in colors
from the previous lesson.

Any other argument is system unique. The first time this
command is used, its argument may be 0. However,
when a lesson is run and the student selects a new
location for the text window, that location is passed to
the CMI system as a TEXT_LOCATION. It is saved in
whatever format it is provided by the lesson. Then it is
passed back to the next lesson as the argument in this
keyword.
.

Examples Text_Location = 243,128
text_location=Lower-Right
TEXT_LOCATION = 1
text_location = 0

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.5
26-Jan-96 110 CMI001

5.1.9 [Student_Preferences] Keywords (cont.)

Text_Size= Definition When a lesson has text on screen in a window, it may be
possible for the student to select the size that is most
comfortable for his eyes and viewing distance. This
keyword allows that preferred size to be passed to
subsequent lessons.

Value
format

Alpha-numeric. 0 (zero) is a no change status -- that is
no change from the default in the lesson. From the
student's view there may be a significant change in text
size from the previous lesson..

Any other argument is system unique. The first time this
command is used, its argument may be 0. However,
when a lesson is run and the student selects a new size
for the text, that size is passed to the CMI system as a
TEXT_SIZE. It is saved in whatever format it is
provided by the lesson. Then it is passed back to the next
lesson as the argument in this keyword.
.

Examples Text_Size = 14 point
text_size= 134%
TEXT_SIZE = 1.5
text_size = 0

Video= Definition Video controls may be available in software for the
student's use in a lesson with video. Options on tint,
brightness, size, and centering of the image may be
available. These controls are saved as a value in this
keyword.

Value
format

System unique. Data is saved in whatever format it is
created by the lesson, and passed to the next lesson in
that format.

Examples Video= -1
video = 33, 16, 85

AICC 5.1 CMI to CBT Lesson CMI Guidelines

Rev 1.5
26-Jan-96 111 CMI001

5.1.9 [Student_Preferences] Keywords (cont.)

Window.1= Definition Some lessons may allow the student to set the size and
location of windows for some information in a lesson.
For instance, video, help, and glossary information may
be available in a window whose size and location is set
by the student.

Keyword
format

The Window keyword has an extension to enable two or
three window specifications to be set by the student. The
extension is a period followed by a number -- from 1 to
9999. This number should not be zero padded. (.0009
for instance is an illegal extension for the number .9)

Value
format

System unique. Data is saved in whatever format it is
created by the lesson, and passed to the next lesson in
that format.

Examples Window.1=200x100@45,80
Window.2=220x100@540,80

AICC 5.2 CBT Lesson to CMI CMI Guidelines

Rev 1.2
19-Jul-94 112 CMI001

5.2 CBT Lesson to CMI

Description Information that a lesson must/may make available for a CMI system.
The core items (which the lesson MUST make available) are first,
followed by the optional items listed alphabetically. Constructing this
file should be the first thing done by the lesson after launch

Group Names and Keywords Function of Group
[Core]

Lesson_Location
Lesson_Status
Score
Time

Information required by the CMI
system to function.

[Core_Lesson]
data is undefined and may be
unique to each lesson

Information required by the lesson
for the student when he next uses
it. Passed to the CMI system to
hold and to return the next time the
student starts this lesson.

[Comments]
no key words
<delimited>

Student comments on lesson.

[Objectives_Status]
J_ID.1
J_Score.1
J_Status.1

Information on objectives
contained in the lesson.

[Student_Data]
Tries_During_Lesson
Try_Score.1
Try_Status.1
Try_Time.1

Information on student
performance for each attempt on a
selected segment of the lesson
without leaving the lesson.

AICC 5.2 CBT Lesson to CMI CMI Guidelines

19-Jul-94 113 CMI001

[Student_Preferences]
Audio
Language
Lesson_Type
Text
Text_Color
Text_Location
Text_Size
Video
Window.1

Student selected options to be
passed to next lesson he enters.

AICC 5.2 CBT Lesson to CMI CMI Guidelines

19-Jul-94 114 CMI001

5.2.1 [Core]

Definition This is the group name associated with the following keywords. Items
in this group are required in the file. The lesson may or may not update
the file periodically to indicate changes to these core items. However,
the file should be updated when the student leaves the lesson to indicate
the final status.

Lesson_Location
Lesson_Status
Score
Time

Examples [CORE]
Lesson_Status = Passed
Lesson_Location = end
score = 87
time = 00:18:00

[core]
Lesson_Status=NA
Lesson_Location=Intro
score=
time=00:02:38

AICC 5.2 CBT Lesson to CMI CMI Guidelines

Rev 3.4
23-Oct-00 115 CMI001

5.2.1 [Core] keywords

Lesson_Location= Description See the Lesson_Location keyword on page 65.

Lesson_Status= Description This is the status determined by the lesson based on the
student activity in the lesson. It may be accompanied by
a flag.

Six statuses are possible. They are described in Section
5.2.1. on page 69.

Flags Each status must be accompanied by a flag if one of the
circumstances described below occurs. The additional
flags are T, S, and L.

• Time-out (or t). This indicates the lesson ended
because the lesson has determined an excessive
amount of time has elapsed, or the
Max_Time_Allowed has been exceeded.

• Suspend (or s). This indicates the student leaves the
lesson with the intent of returning to it later at the
point where he left.

• Logout (or l). This indicates that the student logged
out from within the lesson instead of returning to the
CMI system to log out. This implies that the lesson
passed control to the CMI system, and the CMI
system automatically logged the student out of the
course -- after updating the appropriate files.

• No Flag. This indicates that the student had a normal
exit.

Note: These flags do not accompany the lesson status
passed from the CMI to the CBT lesson. The only flags
possible when passing information back to the lesson are
the ab initio and resume flags.

AICC 5.2 CBT Lesson to CMI CMI Guidelines

Rev 1.2
19-Jul-94 116 CMI001

Lesson_Status=
(cont.)

Argument
format

A word, character or phrase, optionally followed by a
comma and one additional word or character. Only the
first character is significant in each word.

Example 1 Lesson_Status = incomplete,logout
; Student logged out without completing lesson

Example 2 Lesson_Status = incomplete, suspend
; Student left without completing lesson.
; Student probably intends to return to the lesson.

Example 3 Lesson_Status = not attempted
; Student looked at some part of the lesson, did not
; attempt to challenge it, and then left normally.

Example 4 lesson_status = p,l
; Student passed the lesson, and wants to log out of the
; course

Score=
Definition
Format

Definition and format are the same as described under
the Score keyword on page 74.

Usage rules If there is no score to report, the lesson returns a blank or
null, that is "Score="

Time= Definition This is the amount of time in hours, minutes and seconds
that the student has spent in the assignable unit at the
time he leaves it. That is, this represents the time from
beginning of the session to the end of a single use of the
unit.

Other aspects of time are the same as described under the
Time keyword on page 76.

Note: It is assumed that the CMI system will accumulate
the individual session times into the total time for all of
the assignable unit uses.

AICC 5.2 CBT Lesson to CMI CMI Guidelines

Rev 1.2
19-Jul-94 117 CMI001

5.2.2 [Core_Lesson]

Definition This is normally data that is created by the lesson and stored by the CMI
system to pass back to the lesson for the next time the lesson is run.
Information needed by the lesson for a restart.

See amplified description in Section 5.1.2, page 77.

AICC 5.2 CBT Lesson to CMI CMI Guidelines

Rev 1.2
19-Jul-94 118 CMI001

5.2.3 [Comments]

Description This group contains freeform feedback from the student. He may have
the option of leaving comments at any point in the lesson, or he may be
asked for comments at the end of the lesson. In any case, each comment
is preserved in this group and identified as comment 1, 2, 3 etc.

The comment may also have an indication of where or when in the
lesson it was created. A location may be tagged and embedded in the
comment.

Format Any number of lines with any alphanumeric and special characters. The
carriage returns are not used at the end of every line in the file. Word-
wrap is allowed. Carriage returns, when in a string should be honored
by the lesson (application).

For example:

...abc
def

when displayed to the student becomes

...abcdef

while:

...abc<cr>
def

when displayed to the student becomes

...abc
def

Comment
delimiters

Each comment is preceded by a less-than sign, the number of the
comment, and a greater-than sign. Each comment is ended by a less-
than, an "e", a period, the comment number, and a greater-than. The E is
not case sensitive.

AICC 5.2 CBT Lesson to CMI CMI Guidelines

Rev 1.2
19-Jul-94 119 CMI001

Delimiter examples <1>This was a lousy lesson!!!<e.1>
<13>You mispellled the word defueling.<E.13>
<6> I don't understand why answer B is correct. <e.6>

Comment data The lesson location of the comment and any other data that may be of
value to the developer or instructor can also be included. The less-than
and greater-than symbols are used with an "L." embedded. The location
identifier which follow the "L." may include spaces. The location
identifier that follows the period is a function of how the lesson author
wants to identify location.

Data examples <l.frame12>
<L. page 36>
<L.fuel3-21>
<L. Fuel part 3: interaction 24>

The location parameter indicates exactly where in the lesson the student
was when he created the comment. The location is placed inside the
comment delimiters along with any other information deemed desirable.

Size 4096 bytes.

Cross reference Locations can correspond to lesson elements. Lesson elements are
arbitrary divisions of an assignable unit that have been uniquely named
(ID). They are described in Section 7.5 under the group name [PATH].

Comment
examples

[Comments]
<1><L.apu.intro>Why is the APU swich labels reversed
from my airplane here?<E.1>
<2><L.apu.q3>I don't understand why B is right.
Shudn't the fire handle be checked first?<E.2>

[Comments]
<1> Electrical is mispelled here.<E.1>
; Without a location, some comments are less useful.

AICC 5.2 CBT Lesson to CMI CMI Guidelines

Rev 1.5
26-Jan-96 120 CMI001

5.2.4 [Objectives_Status]

Similar to CMI to
Lesson data

This group corresponds to the OBJECTIVES_STATUS group in section
"5.1 CMI to Lesson." It contains the same information in the same
format as that which the CMI system sends to the lesson. However, the
data in this group represents only the status during the current attempt.
This group does not have statuses for objectives which are not
challenged during the current attempt on the lesson.

Definition An objective identifier and an indication of what the student has done
on previous attempts on the lesson. The student can pass, fail, or not
attempt an objective. These objectives are those associated with the
current launching lesson, not all the objectives in the course/curriculum.

Four keywords are available in this group:

J_ID.1
J_Score.1
J_Status.1

Example [objectives_status]
J_ID.1 = APU1684
j_status.1 = passed

AICC 5.2 CBT Lesson to CMI CMI Guidelines

Rev 1.5
5-Jan-96 121 CMI001

5.2.4 [Objectives_Status] keywords

J_ID.2= Description See J_ID.1 on page 86

J_Score.1= Description See J_Score.1 on page 87.

J_Status.4= Definition See J_Status.1 on page 89.

AICC 5.2 CBT Lesson to CMI CMI Guidelines

Rev 1.5
26-Jan-96 122 CMI001

5.2.5 [Student_Data]

Definition This group provides more information on an individual student's
performance than the data available in the [CORE] group.

For instance, the Score and Status returned in [CORE] are the final, or
last score and status achieved in the lesson. In some lessons, a student
may be allowed to take a test multiple times without leaving a lesson.
The score, or result of each try could be of interest to the instructor.
This group allows the capture of multiple scores for multiple tries.

There are currently 4 keywords defined for this group.

Tries_During_Lesson
Try_Score.1
Try_Status.1
Try_Time.1

AICC 5.2 CBT Lesson to CMI CMI Guidelines

Rev 1.5
26-Jan-96 123 CMI001

5.2.5 [Student_Data] keywords

Tries_During_
Lesson=

Definition Total number of efforts to complete the lesson before
leaving it. This may correspond to the number of
attempts to complete an embedded test or exercise.

Keyword
format

The TRY_STATUS keyword has an extension to make it
unique. The extension is a period followed by a number -
- from 1 to 9999. This number should not be zero
padded. (.0009 for instance is an illegal extension for the
number .9)

Data
format

Integer number from 0 to 100.

Examples tries_during_lesson = 3
Tries_during_Lesson=16

Try_Score.1= Definition The score at the completion of each attempt during a
single use of a lesson. This may correspond to the
number of times an embedded test or exercise was
completed.

Keyword
format

The TRY_STATUS keyword has an extension to make it
unique. The extension is a period followed by a number -
- from 1 to 9999. This number should not be zero
padded. (.0009 for instance is an illegal extension for the
number .9)

Data
format

Integer number. For letter grades, numbers must be
substituted.

Usage rules The numerical extension (.1, .2, etc.) identifies for which
attempt the score is appropriate.

Examples Try_Score.1=95
TRY_SCORE.2 = 80
try_score.3 = 100

AICC 5.2 CBT Lesson to CMI CMI Guidelines

Rev 1.5
26-Jan-96 124 CMI001

5.2.5 [Student_Data] keywords (cont.)

Try_Status.1= Definition The status of the lesson after each attempt during a single
use of the lesson. This may correspond to the status at the
completion of each attempt to complete an embedded test
or exercise in the lesson.

Possible statuses are the same as for the Lesson_Status:
Passed
Completed
Failed
Incomplete
Not attempted

Keyword
format

The TRY_STATUS keyword has an extension to make it
unique. The extension is a period followed by a
two-
digitnumber -- from
00 to 99.1 to 9999. This number should not be zero
padded. (.0009 for instance is an illegal extension for the
number .9)

Usage rules Only the first character in each status is significant.

The numerical extension (.1, .2, etc.) identifies for which
attempt the score is appropriate.

Example 1 Tries_During_Lesson = 3
Try_Status.1 = failed
Try_Status.2 = incomplete
Try_Status.3 = not attempted

Example 2 Tries_During_Lesson=4
Try_Status.4=p
Try_Status.2=p
Try_Status.3=i
Try_Status.1=f
; Order of listing is irrelevant. The extension indicates
; the sequence of the statuses.

5.2.5 [Student_Data] keywords (cont.)

AICC 5.2 CBT Lesson to CMI CMI Guidelines

Rev 1.5
26-Jan-96 125 CMI001

Try_Time.
01=

Definition For each effort to get a passing score, or complete an
exercise, a time can be recorded. The first effort time
corresponds to .
01, the second effort to .
02, and so forth.

Keyword
format

The TRY_STATUS keyword has an extension to make it
unique. The extension is a period followed by a number -
- from 1 to 9999. This number should not be zero
padded. (.0009 for instance is an illegal extension for the
number .9)

Data
format

Hours, minutes, and seconds separated by a colon.
hh:mm:ss

Usage rules The numerical extension (.1, .2, etc.) identifies for which
attempt the time is appropriate.

Three numbers separated by colons are always required
to express time.

Examples try_time.1 = 00:14:37
Try_Time.2 = 00:00:54
TRY_TIME.3=01:14:21

AICC 5.2 CBT Lesson to CMI CMI Guidelines

Rev 1.5
26-Jan-96 126 CMI001

5.2.6 [Student_Preferences]

Definition Frequently lessons are designed to allow students to select options that
are appropriate for subsequent lessons. For instance, a lesson may have
audio with a software volume adjustment. When the volume is adjusted
it may be desirable to pass that volume preference to a lesson taken the
next day.

Key words The following key words are defined for this group.

Audio
Language
Lesson_Type
Text
Text_Color
Text_Location
Text_Size
Video
Window.1

AICC 5.2 CBT Lesson to CMI CMI Guidelines

Rev 1.5
26-Jan-96 127 CMI001

5.2.6 [Student_Preferences] Keywords

Audio= Description See Audio= under [Student_Preferences] on page 104.

Language= Description See Language under [Student_Preferences] on page 104.

Lesson_Type= Description See Lesson_Type under [Student_Preferences] on page
105.

Text= Description See Text under [Student_Preferences] on page 107.

Text_Color= Description See Text_Color under [Student_Preferences] on page
108.

Text_Location= Description See Text_Location under [Student_Preferences] on page
109.

Text_Size= Description See Text_Size under [Student_Preferences] on page 110.

Video= Description See Video under [Student_Preferences] on page 111.

Window.1= Description See Window.1 under [Student_Preferences] on page 111.

AICC 5.3 Error & Default Conditions CMI Guidelines

25-Oct-93 128 CMI001

5.3 Error and Default Conditions

Error conditions and recommended actions are defined as follows:

AICC 5.3 Error & Default Conditions CMI Guidelines

25-Oct-93 129 CMI001

5.3.1 File Creation, File Read, and File Write Errors

1. ERROR CMI system cannot create the CMI-to-CBT lesson file

SUGGESTED ACTION :
CMI system sends an error message to the student that the lesson
cannot be run, and does not initiate the CBT lesson.

2. ERROR CBT system cannot read the CMI-to-CBT lesson file

SUGGESTED ACTION :
CBT system puts out an error message to the student and returns to
CMI; CBT system does not create the CBT-to-CMI file.

3. ERROR CBT system cannot create the CBT-to-CMI file

SUGGESTED ACTION :
CBT system runs as normal without the writing the file; CMI
handles as error condition 5.

4. ERROR CBT system cannot write the CBT-to-CMI file

SUGGESTED ACTION :
CBT system puts out an error message and returns to CMI without
writing the file; CMI handles as error condition 5.

5. ERROR CMI system cannot read the CBT-to-CMI file

SUGGESTED ACTION :
CMI system puts out an error message, assumes assignment is
complete, stores default student performance data, and makes the
next assignment.

Suggested minimum default performance data:
 time = 0
 score =
 lesson status = complete

AICC 5.3 Error & Default Conditions CMI Guidelines

25-Oct-93 130 CMI001

5.3.2 Data and File Format Errors

1. ERROR Missing group

SUGGESTED ACTION :
If core group, use default values. If optional group, process as if no
data supplied.

2. ERROR Illegal or misspelled group name

SUGGESTED ACTION :
If core group, use default values. If optional group, process as if no
data supplied.

3. ERROR Duplicate group

SUGGESTED ACTION :
Process only the first instance of the group.

4. ERROR Missing keyword item

SUGGESTED ACTION :
If core group, use default value. If keyword in optional group,
process as if no data supplied.

5. ERROR Illegal or misspelled keyword ID

SUGGESTED ACTION :
If core group, use default value. If keyword in optional group,
process as if no data supplied.

6. ERROR Duplicate keyword

SUGGESTED ACTION :
Process only the first instance of the keyword.

AICC 5.3 Error & Default Conditions CMI Guidelines

25-Oct-93 131 CMI001

7. ERROR Illegal keyword data (e.g. SCORE = ABV)

SUGGESTED ACTION :
If core group, use default value. If keyword in optional group,
process as if no data supplied.

8. ERROR Illegal comment delimiter (e.g. missing <#>)

SUGGESTED ACTION :
Process as if no data supplied.

AICC 5.3 Error & Default Conditions CMI Guidelines

25-Oct-93 132 CMI001

5.3.3 CBT and CMI System Mismatch Errors

1. ERROR CMI system creates CMI-to-CBT lesson data and CBT system is not
modified to process the data

SUGGESTED ACTION :
CBT systems runs as normal and does not put out the CBT CMI
data file. The CMI system handles the situation as if there was an
error reading the CBT CMI file.

2. ERROR CBT system creates CBT-to-CMI data and CMI system is not designed
to process the data

SUGGESTED ACTION :
CMI system runs as normal without the results being reported back.
Probably should make sure that the CBT systems deletes any old
instances of the lesson->CMI file before writing initial data to the
file.

3. ERROR CBT system does not create CBT-to-CMI data and CMI system is ready
to process the data

SUGGESTED ACTION :
CBT system runs as normal not putting out the CBT CMI data
file. The CMI system handles the situation as if there was an error
reading the CBT CMI file.

AICC 6.0 Course Structure Data CMI Guidelines

25-Oct-93 133 CMI001

6.0 COURSE STRUCTURE DATA

Purpose The purpose of defining a CMI structure interchange format, is to simplify
the process of moving a course from one CMI system to another.

After moving a course, a review-and-modify effort is going to be required
The existence of standard interchange files however, should eliminate a
large number of the man-hours necessary to input a new course from
scratch.

Chapter contents This chapter describes the basic concepts upon which the course
structure description is based. It also describes the levels of complexity
that may be used to describe a course structure using this system.

This is followed by a detailed description of each of the seven possible
files that may be used in describing a course.

Finally, there are a couple of examples of course descriptions.

Section Subject
6.0.1 Basic Concepts
6.0.2 Course Building Blocks
6.0.3 Levels of Complexity
6.1 The Course File
6.2 Assignable Unit Table
6.3 Descriptor Table
6.4 Course Structure table
6.5 Objectives Relationships Table
6.6 Prerequisites Table
6.7 Completion Requirements Table
6.8 Examples

AICC 6.0 Course Structure Data CMI Guidelines

Rev 3.0
1-Sep-99 134 CMI001

6.0.1 Basic Concepts

The basic concepts The files containing the structure of a course need to answer the
question, "What information does a CMI system need, to present the
training material to the student in the way desired by the designer?"

Table: implied
order

The approach taken by this document assumes that the answer can be
implied in a table that contains all of the lessons and lesson groups in a
course.

The answer can be made explicit by stating prerequisites for each lesson
(or assignable unit) in the course. When pre-conditions are set that must
be met before a student can select or be assigned a lesson, each lesson,
assumes a place in the course structure.

For instance, assume there is a course of six lessons. The order of the
lessons can be implied by putting them in a simple table; then reading
the table left to right, and top to bottom.

Course Hierarchy Table
Root Lesson 1 Lesson 2 Lesson 3 Lesson 4 Lesson 5 Lesson 6

Prerequisites:
explicit order

To make this order explicit, assume lesson 6 has a prerequisite of the
student having completed lesson 5, and lesson 5 requires passing lesson
4, and lesson 4 requires completion of lesson 3, etc. This results in the
linear presentation of the lessons in sequence from 1 through 6.

Lesson
 1

Prereq for 2

Lesson
 2

Prereq for 3

Lesson
 3

Prereq for 4

Lesson
 4

Lesson
 5

Lesson
 6

Prereq for 5 Prereq for 6

AICC 6.0 Course Structure Data CMI Guidelines

Rev 3.0
1-Sep-99 135 CMI001

Prerequisites Of course, even with prerequisites there are cases where it is desirable to
let the student chose the order. If three lessons have exactly the same
prerequisites, then the student has an option -- after meeting the
prerequisites -- of selecting any of the three.

In this approach, prerequisites can be defined in terms of completed
lessons, or mastered objectives.

Prerequisite table Assignable Unit Prerequisites
Lesson 1 None
Lesson 2 Lesson 1
Lesson 3 Lesson 2
Lesson 4 Lesson 3
Lesson 5 Lesson 4
Lesson 6 Lesson 5

Descriptions In addition to files describing the course hierarchy and prerequisites
there need to be files describing the elements in the course. This is
textual information and not required to determine the order in which
the student can take the course material. This information includes
the titles of the various items in the course and a narrative
description of them when desired.

Status In the Chapter on CMI/Lesson communication (Chapter 5) there is a
description of information passed back to the CMI system as the student
leaves the lesson. This information includes Lesson Status and Objectives
Status.

These statuses can be used to determine whether prerequisites are met for
each structure element (assignable units and blocks) in the course.

AICC 6.0 Course Structure Data CMI Guidelines

Rev 3.0
1-Sep-99 136 CMI001

6.0.2 Course Building Blocks

Structure elements The parts of the course that can be rearranged to define the order in which
a student can experience a course are referred to in this document as
structure elements. These are the assignable unit and the block. The
order in which these appear in the course defines its structure.

Assignable unit, also referred to as a lesson. This is one of the two
structure elements.

Block. This is the second structure element. A block is simply a
grouping of lessons and other blocks.

Another building block, which may be required to define prerequisites for
a course, is the objective.

Objective. This is also mostly content information, that includes a
title for each objective, and a narrative description if desired.

Course elements These three items
• Assignable unit (lesson),
• Block, and
• Objective

are referred to as course elements.

AICC 6.0 Course Structure Data CMI Guidelines

Rev 3.0
1-Sep-99 137 CMI001

6.0.3 Levels of Complexity

3 Levels This guideline defines three levels of complexity in describing the
course structure. Increasing the level of complexity from level 1 to 2 to
3 should result in:

• Less effort to review and modify the CMI system after importing the
data.

• More complete description of the designer's intended usage of the
course material.

Course description
data

There are seven files that can be used to describe a course's content and
structure. The level of complexity determines the number of files
required and the amount of information required in each file.

Attributes
Level 1 • Description. (Course, Descriptor,

& Assignable Unit files)

• Course structure. (Course
Structure file)

This is the simplest level. It describes the contents of the course -- the
lessons or assignable units. It also defines the course structure in terms
of assignable units and blocks. It allows the construction of a course
hierarchy. The order in which the student may go through the course is
only implied with the structure. This description cannot force any order
on the student.

Attributes

AICC 6.0 Course Structure Data CMI Guidelines

Rev 3.0
1-Sep-99 138 CMI001

Level 2 • Description. (Course, Descriptor,
& Assignable Unit files)

• Course structure(Course
Structure file)

• Simple Prerequisites
(Prerequisites file)

• Simple Completions (Completion
Requirements file)

This level of complexity adds a possible single prerequisite for each
structure element -- an assignable unit or a block.4 The status of each
prerequisite is simple: complete or incomplete. The order in which the
student moves through the course can be forced by prerequisites.

This level also introduces the ability to identify a structural element
whose completion status can affect another element. This concept
enables (among other things) the use of separate assignable units as pre-
tests. Thus the completion of one assignable unit (such as a pre-test)
can result in the “Pass” status of another unit (such as an instructional
lesson).

Level 3 Level 3 is divided into two parts. A level 3 conforming system may
support features described as Level 3a or Level 3b or both feature sets.
Level 3a adds the ability to define complex prerequisites and complex
completion requirements. Logical expressions may be used to describe
these requirements. Level 3b describes the relationship of objectives to
the course structural elements.

Supporting 3A and 3B allows the use of complex prerequisites and
completions with objectives.

4 At this level, block completion is determined by default rules. Specific and unique
completion requirements for a block are defined only in level 4 and above structure descriptions.

AICC 6.0 Course Structure Data CMI Guidelines

Rev 3.0
1-Sep-99 139 CMI001

Attributes
Level 3a • Description. (Course, Descriptor,

& Assignable Unit files)

• Course structure(Course
Structure file)

• Complex Prerequisites
(Prerequisites file)

• Complex Completions
(Completion Requirements file)

This level adds the ability to use logical expressions to describe
prerequisites and completion requirements.

Attributes
Level 3b • Description. (Course, Descriptor,

& Assignable Unit files)

• Course structure(Course
Structure file)

• Prerequisites (Prerequisites with
objectives)

• Completions (Completion
Requirements with objectives)

• Objectives (Objective
Relationships file)

This level adds objectives to the structure. Mastery of these objectives
can be used as prerequisites, as well as determining completion of
assignable units and blocks.

Multiple prerequisites for each block or assignable unit can be defined
with logic statements using and (&) and or (|) if 3A is supported as
well as 3B..

AICC 6.0 Course Structure Data CMI Guidelines

Rev 3.0
1-Sep-99 140 CMI001

Level Attributes
Content Attributes Sequencing Attributes

Level 1 Course contents described Order of elements is implied

Files
Required

Level 2 Order of elements can be made
explicit with simple prerequisites

and completion requirements.

Additional File
Required

Level 3a Order of elements can be
described with complex logical

expressions.

Additional and
Augmented Files

Level 3b Objectives are added to course
contents and described

Objectives may be used in logic
statements.

Additional and
Augmented Files

Legend: CD = Course Descript.
AU = Assignable Unit
DES = Descriptor
CS = Course Structure

PRE = Prerequisites
CR = Completion Req.
OR = Objective

Relationships

Gray file
symbols
represent
augmented
files.

CD AU DES CS

PRECR

CR PRE

OR DES CR PRE

AICC 6.0 Course Structure Data CMI Guidelines

Rev 3.0
1-Sep-99 141 CMI001

Example Here is an example of a simple course structure. It has three blocks:
Electrical, Power Plant, and Fuel. It has nine lessons. The student
may select any block at any time, but inside a block, he must take
the lessons in sequence.

For instance, when Power Plant is selected, the student must first
complete the lesson on the Power Plant Fuel system, then complete
Oil, complete Pneumatics, and finally complete Procedures. The
student cannot select another block, until he has completed the
Procedures lesson on Power Plant.

Electrical

AC DC Proc.

Power Plant

Fuel Oil Pneum. Proc.

Fuel

System Proc.

(Block)

(Block)

(Block)

(Assignable Units)

(Assignable Units)

(Assignable Units)

AICC 6.0 Course Structure Data CMI Guidelines

Rev 3.0
1-Sep-99 142 CMI001

Level 1 The following table is a level 1 description of this example course.

Course Structure Table
Owner Member Member Member Member

root Electrical
(Block)

Power Plant
(Block)

Fuel
(Block)

Electrical
(Block)

AC DC Electrical
Procedures

Power Plant
(Block)

Fuel Oil Pneumatics Power Plant
Procedures

Fuel
(Block)

System Fuel
Procedures

Level 2 Adding the following table enables a level two description. There are no
separate pre-tests or other features that would require a completion
requirements table.

Prerequisites Table
Structure Element Prerequisite
Electrical (Block) None

AC None
DC AC

Electrical Procedures DC
Power Plant (Block) None

Fuel None
Oil Fuel

Pneumatics Oil
Power Plant Procedures Pneumatics

Fuel (Block) None
System None

Fuel Procedures System

Levels 3a & 3b This simple course does not use objectives in its description; and does not
require any logical statements to better describe its structure. Level 3
descriptions would be no different, and require no additional tables (other
than description tables).

AICC 6.1 The Course File CMI Guidelines

Rev 1.3
28-Mar-95 143 CMI001

6.1 The Course File

Description This file contains information about the course as a whole. It offers
information that relates to more than just a single element in the course.

File type Group/Keyword (MS Windows INI)

File name xxxxxxxx.CRS
The extension for this file is CRS. Any OS-legal set of characters may
be used for the primary file name.

AICC 6.1 The Course File CMI Guidelines

Rev 3.0
1-Sep-99 144 CMI001

Groups and
keywords

This file contains three groups.

Group Names and Keywords Function of Keywords

*

*
*

[Course]
Course_Creator
Course_ID
Course_System
Course_Title
Level
Max_Fields_CST
Max_Fields_ORT
Total_AUs
Total_Blocks
Total_Objectives
Total_Complex_Obj
Version

This group contains information
that applies to the course as a
whole. Some of this data is
designed to help in processing the
other files that provide more
detailed information on the
elements in the course and how
they are ordered.

[Course_Behavior]
Max_Normal

Defines lesson behavior defaults
expected in the delivery of the
course.

[Course_Description]
Textual description of the course.

* These keywords are NOT required for level 1 compliance to the AICC guidelines.

AICC 6.1 The Course File CMI Guidelines

Rev 1.5
26-Jan-96 145 CMI001

6.1.1 [Course] Keywords

Keywords This list of keywords is in a logical order for their appearance in the
file.

Course_Creator Name of group that authored the course.
Course_ID Identifier for the course
Course_System Name of the authoring system used to

create the course.
Course_Title Common name given to the course.
Level The complexity level of the file and the

course description contained in the file.
Max_Fields_CST Maximum number of fields appearing in

the Course Structure Table file.
* Max_Fields_ORT Maximum number of fields appearing in

the Objectives Relationships Table file.
Total_Aus Total number of AUs in the course.
Total_Blocks Total number of blocks in the course.

* Total_Complex_Obj Total number of complex objectives
defined in the file.

* Total_Objectives Total number of objectives in the course.
This number includes simple and complex
objectives.

Version The revsion number of the guideline on
which the Course Structure is based

* These keywords are NOT required for level 1 compliance to the AICC guidelines.

AICC 6.1 The Course File CMI Guidelines

Rev 3.0
1-Sep-99 146 CMI001

6.1.1 [Course] Keyword

Course_Creator= Definition Name of the vendor and/or author of the course.

Data
format

Alphanumeric. All characters, beginning with the first
printable character after the equals sign are significant.

Examples Course_Creator = Boeing Commercial Airplane Group, \
Customer Services

Course_Creator = Airbus

Course_ID= Description See Course_ID keyword on page 82.

Course_System= Definition Name of the predominant authoring system used to
create the course. The authoring system used to create
the greatest number of units in the course.

Data
format

Alphanumeric. All characters, beginning with the first
printable character after the equals sign are significant.

Examples Course_System=Authorware

Course_system = PCD3

Course_System=WISE

Course_System=VACBI

course_system = AIS II

AICC 6.1 The Course File CMI Guidelines

Rev 3.0
1-Sep-99 147 CMI001

6.1.1 [Course] Keywords (cont.)

Course_Title= Definition Common name given to the course. Probably used by
the CMI system when identifying course for student.

Data
format

Alphanumeric. All characters, beginning with the first
printable character after the equals sign are significant.

Examples Course_Title = 747 Flight Crew Training

Course_Title = Maintaining 747 Avionics

Level= Definition Complexity level of the file's description of the course.
There are three levels of complexity numbered 1 through
3. One is the simplest to 3, the most complex. Level 3 is
divided into two parts, referred to as 3a and 3b.

Usage rules If Level is not defined, level 1 complexity is assumed.

Format Alphanumeric characters. Allowed vocabulary is:
1 - Supports level 1 course interchange. May support
features from higher levels as well.
2 - Supports all features of level 1 and level 2. May
support some features from level 3.
3 - Supports all level 1, 2, 3a, and 3b features of course
interchange.
3a - Supports level 1, 2, and 3a interchange.
3b - Supports level 1, 2, and 3b interchange.

Examples Level = 3

Level = 2

AICC 6.1 The Course File CMI Guidelines

Rev 3.0
1-Sep-99 148 CMI001

6.1.1 [Course] Keywords (cont.)

Max_Fields_CST= Definition Identifies the maximum number of fields that are in the
course structure table (any.CST file).

Format Numeric characters.

Examples Max_fields_CST=12
; There is at least one block (or the course itself) that
; has 11 members.

Max_Fields_CST = 9

Max_Fields_ORT= Definition Identifies the maximum number of fields that are in the
objectives relationships table (any.ORT file).

Format Numeric characters.

Examples Max_fields_OBJ=12
; There is at least one element in the left-most column
that
; has 11 members.

Max_Fields_OBJ = 9

AICC 6.1 The Course File CMI Guidelines

Rev 3.0
1-Sep-99 149 CMI001

6.1.1 [Course] Keywords (cont.)

Total_AUs= Definition The total number of unique assignable units in the
course. This information aids in the processing of
information in the file.

This number does not necessarily represent the largest
digit used to identify an AU. If there are 5 lessons in a
course, they do not have to be identified as A
.001, A.0021, A2, A3, A
.003, A.004, and A.004, and A5. AU identifiers do not
have to be consecutive. A course with 5 lessons
(Total_AUs=5) could have the identifiers A
.00008, A.00064, A.00512, 8, A64, A512, A4096, A2768

Format Numeric characters.

Examples Total_AUs = 3
; There are three assignable units in the course.

Total_AUs= 84

total_aus = 138

Total_Blocks= Definition The total number of unique blocks in the course. This
information aids in the processing of the rest of the data
in the file.

This number does not have to be equal to the largest
number used in an extension. Identifier extensions do
not have to be consecutive.

Format Numeric characters.

Examples Total_Blocks = 3
; There are three blocks in the course.

Total_Blocks= 84

total_blocks = 138

AICC 6.1 The Course File CMI Guidelines

Rev 3.0
1-Sep-99 150 CMI001

6.1.1 [Course] Keywords (cont.)

Total_Complex_
Obj=

Definition The total number of unique complex objectives in the
course. This information aids in the processing of the
rest of the data in the file.

This number does not have to be equal to the largest
number used in an extension. Identifier extensions do
not have to be consecutive.

Format Numeric characters.

Examples Total_Complex_Obj = 3
; There are three complex objectives in the course.

total_complex_obj = 138

Total_Objectives= Definition The total number of unique objectives in the course.
This information aids in the processing of the rest of the
data in the file.

This number does not have to be equal to the largest
number used in an extension. Identifier extensions do
not have to be consecutive.

Format Numeric characters.

Examples Total_Objectives = 3
; There are three objectives in the course.

total_objectives = 138

AICC 6.1 The Course File CMI Guidelines

Rev 3.0
1-Sep-99 151 CMI001

6.1.1 [Course] Keywords (cont.)

Version = Definition Identifies the CMI Guidelines for Interoperability
document revision number on which the Course
Structure data files are based.

Every time this document is updated, it receives a
different revision number. This number appears on the
cover page, along with the date of the revision.

Format Numeric characters with a decimal point.

Examples Version =1.2

version = 2.0

AICC 6.1 The Course File CMI Guidelines

Rev 3.0
1-Sep-99 152 CMI001

6.1.2 [Course_Behavior] Keywords

Purpose This group is used to define keywords that affect the behavior of the
CMI system.

Max_Normal The maximum number of assignable units
that may be taken for credit and
incomplete.

AICC 6.1 The Course File CMI Guidelines

Rev 2.1
18-Jun-98 153 CMI001

6.1.2 [Course_Behavior] Keywords (cont.)

Max_Normal= Definition The maximum number of assignable units that may be
taken for credit simultaneously. That is, this value
indicates how many lessons launched with credit = credit
are allowed to be incomplete.

When this number is exceeded, subsequent launches
must be with credit=no_credit. Further, default behavior
is to launch all additional lessons in the Browse CMI
mode.

Format A single integer number. Number must be less than 100.

Default If no number is indicated, 1 is assumed. If a number
greater than 99 is indicated, then 99 is assumed.

Examples Max_Normal=1
; only 1 lesson being taken for credit can be incomplete.
Max_Normal = 5

AICC 6.1 The Course File CMI Guidelines

Rev 2.1
18-Jun-98 154 CMI001

6.1.3 [Course_Description]

Definition This is a textual description of the contents of the course. It may
contain the purpose, or the scope, or a summary of the course
objectives. The content of this field is determined by the desires of the
author.

Format Freeform text. Carriage returns are implied (explicitly) at the end of
each line.

Size 4096 bytes for the entire group, including all lines.

AICC 6.2 Assignable Unit File CMI Guidelines

Rev 2.1
18-Jun-98 155 CMI001

6.2 Assignable Unit File

Description Information relating to the assignable units (AU) in the course. Each
AU has its own record (or row in the table).

File type Table (Comma-delimited ASCII)

File name xxxxxxxx.AU
The extension for this file is AU. Any OS-legal set of characters may
be used for the primary file name.

Fields The first record contains the field identifiers. The order in which these
field identifiers appear determines the order of the data in subsequent
records. Each following record in this file describes a different
assignable unit. Each record has the following fields.

Assignable Unit File: the fields
System ID Type Command Line File Name

System_ID Type Command_Line File_Name

Continued Max Score Mastery Score Max Time Allowed
Max_Score Mastery_Score Max_Time_Allowed

Continued Time Limit Action System Vendor Core Vendor
Time_Limit_Action System_Vendor Core_Vendor

Although all field identifiers must be in the file for level 1 compliance, only the following field
values are required:

System_ID
Command_Line
File_Name
Core_Vendor

Note that Core_Vendor may be a blank field in some cases. However, if it exists, data in this
field must be supported by the CMI system for level 1 compliance.

AICC 6.2 Assignable Unit File CMI Guidelines

Rev 1.3
28-Mar-95 156 CMI001

Example file
contents

The three records below are extracted from the beginning of a
hypothetical file.

"system_id","type","command_line","Max_Time_Allowed",”time_limit_action”,"file_name","
max_score","mastery_score","system_vendor","core_vendor”

"A11","lesson","APU1 -nuv","00:16:00", “Exit”,"APU1.EXE",80,80, "APW",""

"A12","test","APU2 -nuv","00:26:00",”E,Message”, "APU2.EXE",100,90, "APW","test = on"

"A13","lesson","ELEC -nuv","00:28:00",”E,N”, "ELEC1.EXE",50,50, "APW",""

AICC 6.2 Assignable Unit File CMI Guidelines

25-Oct-93 157 CMI001

6.2 Assignable Unit Fields

System ID Description See the System ID field description on page 163.

Type Definition Assignable units may be categorized. Type identifies a
user defined category. These are determined by the
designer/developer of the assignable unit.

Data
format

Alphanumeric. Not case sensitive. May contain spaces
and commas.

Examples "Lesson"
"Criterion Test"

Command Line Definition The string of characters needed to successfully launch an
executable program in the DOS environment.
Environment variables may be embedded in the
command line.

Data
format

Alphanumeric. Not case sensitive. Limited to 255
characters.

Examples "APU /UAL /MN"

"ELEC3 -nuv3"

"%lesloc%ELEC3 -nuv3"

AICC 6.2 Assignable Unit File CMI Guidelines

Rev 2.1
18-Jun-98 158 CMI001

6.2 Assignable Unit Fields (cont.)

File Name Definition The full identifier of the file containing the most critical
content of the assignable unit. (An assignable unit may
require several files -- a graphics library file, a digitized
audio file, etc.) The name, as listed by the operating
system when disk contents are requested.

Environment variables may be embedded in the file
name to indicate a "soft" path.

Data
format

Alphanumeric characters. May be case sensitive,
depending on the operating system.

Usage rules Should not include an explicit path name, because that
path could be invalid in the target system..

Examples "APU.EXE"
"%lespath%\APU.WIS"

Mastery Score Description See Mastery_Score description under CMI to CBT
[Student_Data] keywords, page 94.

AICC 6.2 Assignable Unit File CMI Guidelines

Rev 2.1
18-Jun-98 159 CMI001

6.2 Assignable Unit Fields (cont.)

Max Score Definition When the student exits a lesson a raw score is returned as
one of the keywords in the group [CORE]. (See Lesson
to CMI section 5.2.1) This keyword (Max_Score) allows
the CMI system to compute a percent from the student's
raw score.

This score may not be the same as the reported as Max
Score by the assignable unit. The AU max score is the
maximum that the student could have achieved with the
interactions that he experienced. This Max Score is the
maximum possible when experiencing all interactions in
an AU.

Data
format

Decimal number.

Examples 100

"6"

27.31

Max Time
Allowed

Description See Max_Time_Allowed description under CMI to CBT
[Student_Data] keywords, page 95.

Time Limit
Action

Description See Time_Limit_Action description under CMI to CBT
[Student_Data] keywords, page 97.

System Vendor Definition Authoring system used to create the lesson.

Data
format

Alpha-numeric. Any characters, including spaces, up to
end-of-line and carriage return.

AICC 6.2 Assignable Unit File CMI Guidelines

Rev 2.1
18-Jun-98 160 CMI001

6.2 Assignable Unit Fields (cont.)

Core Vendor Definition Unique information required by the lesson's design.
Without this information, a lesson may not execute.

Data
format

Text field. This contains whatever system-unique
information is necessary for this lesson to function well.
This field is limited to 4096 characters. If more
information is required, the field may contain a reference
to a separate file with the necessary data.

To enable the storage of several keywords and their
values in this field, embedded carriage returns (<CR>)
may be used. When this information is passed to a
lesson in an INI (group-keyword) file, a real carriage
return is substituted for each "<CR>" symbol.

Example The following field in an assignable unit file

"Testmode=on<cr>Special_add=0<cr>Backon=off"

goes into the INI file for the lesson at launch and
becomes

[Core_Vendor]
Testmode=on
Special_add=0
Backon=off

AICC 6.3 Descriptor File CMI Guidelines

Rev 2.2
12-Oct-98 161 CMI001

6.3 Descriptor File

Description This file contains a complete list of every course element in the course.
It is used as the basic cross reference file showing the correspondence of
system generated IDs with user defined IDs for every element. This file
also contains any textual description created for an element in the
course. Course elements include

Assignable Units
Blocks
Objectives
Complex Objectives

File type Table (Comma-delimited ASCII)

File name xxxxxxxx.DES
The extension for this file is DES. Any OS-legal set of characters may
be used for the primary file name.

Fields Each record in this file describes a different element in the course. Each
record has the following fields. Their order is determined by the order in
which the field titles appear in the first record.

Required fields Although all field titles must be in the file for level 1 compliance, only
the following field values are required:

System_ID
Developer_ID
Title

Descriptor File: the fields
System ID
(for course
element)

Developer ID
(for course
element)

Title Description

System_ID Developer_ID Title Description

AICC 6.3 Descriptor File CMI Guidelines

Rev 3.0
1-Sep-99 162 CMI001

6.3 Descriptor Fields

Example file
contents

The records below are extracted from the beginning of a hypothetical
file.

"system_id","developer_id","title","description"
"A1","PP1-2","Power Plant Introduction","An overview of the operation of the primary
systems in the Pratt & Whitney PW2037 engine."

"A2","PP2-1","Power Plant Fuel System","Fuel movement from the tank to the combustors."

"A3","PP3-1","Power Plant Oil System","Oil circulation system in the PW2037 engine."

AICC 6.3 Descriptor File CMI Guidelines

Rev 3.0
1-Sep-99 163 CMI001

6.3 Descriptor Fields (cont.)

System_ID Definition System assigned ID. The exporting system for the
course structure, generates a simple ID for every course
element. That ID must appear in this file.

This simple ID has two parts. A letter and a number.

The letter identifies to what category element the record
refers. Possible categories (types) are:

A -- Assignable Unit
B -- Block
J -- Objective or complex objective

The number is a simple integer to distinguish each
unique item in a category.

Data
format

Alphanumeric. Not case sensitive. The first letter is an
A, B or J. That is followed by an integer number.

Examples "A15"
"J237"
"B1"

AICC 6.3 Descriptor File CMI Guidelines

Rev 3.0
1-Sep-99 164 CMI001

6.3 Descriptor Fields (cont.)

Developer_ID Definition Developer assigned ID. Unique identifier for an
assignable unit, block, objective, or complex objective.
Used outside of this structure file to refer to a specific
element.

Lesson ID and Objective ID are both types of Developer
ID.

Note: Because this is a developer-assigned ID, it may be
unique only to a specific project. It is possible that
multiple developers, at different times and locations,
working on different projects can create the same ID. If
a course is assembled from disparate lessons, these two
lessons could be in the same course. There would be
several identical Developer IDs in such circumstances.

This is why the course interchange files includes System
IDs. These are created by the CMI system and are
guaranteed unique in each course.

Data
format

Alpha-numeric string. No internal spaces.

Examples "APU-747-003"

"747-423-ELEC-001"

AICC 6.3 Descriptor File CMI Guidelines

Rev 3.0
1-Sep-99 165 CMI001

6.3 Descriptor Fields (cont.)

Title Definition Commonly used name for an assignable unit, block,
objective, or complex objective. Probably used by CMI
system in menu screens where students can select an
assignable unit or block, or select to see the status of an
objective.

Data
format

Alphanumeric. Not case sensitive. May contain spaces
and commas.

Examples "Auxiliary Power Unit, Part 1"
"Auxiliary Power Unit Start"
"Electrical Power, Part 3"

Description Definition This is a textual description of the assignable unit,
objective, etc. It may contain the purpose, or the scope,
or a summary of the element. The content of this field is
determined by the desires of the author.

Data
format

Text. Limited to 4096 characters.

AICC 6.4 Course Structure Table CMI Guidelines

Rev 1.9
1-Jul-97 166 CMI001

6.4 Course Structure File

Description This file contains the basic data on the structure of the course. It
includes all of the assignable units and blocks in the course. The order
in which these appear in the file implies (but does not force) an order for
presentation to the student.

Even though the student may have the option of selecting any assignable
unit or block, the CMI router will probably list them in the order in
which they appear in this file.

If a specific order is required by the developer, that order is specified in
the prerequisites table.

File type Table (Comma-delimited ASCII)

File name xxxxxxxx.CST
The extension for this file is CST. Any OS-legal set of characters may
be used for the primary file name.

Records Each record in this file describes the members of a course or block, and
implies a level in the course hierarchy. The order of the records must be
respected both upon import and export to achieve minimum AICC
compliance.

Fields Each record has a variable number of fields, limited by the
Max_Fields_CST keyword in the Course file. Each different assignable
unit or block that appears in the file must have a unique identifier.

The first field in each record is always the course or block identifier.
The course is always identified by the word “root”, and the block
identifier is always arbitrarily determined by the course generation
routine. The block identifier is found in the “system_id” column of the
Descriptor File.

Each block identifier will always appear more than once in a file -- the
first appearance identifies where the block is in the hierarchy; the
second appearance identifies the members of the block. Assignable
units may appear more than once.

AICC 6.4 Course Structure Table CMI Guidelines

Rev 3.0
1-Sep-99 167 CMI001

Usage rules The first entry in the file is always "root."

Each subsequent entry is a system generated ID. The ID indicates the
type of element and that it is a member of the course (root) or block that
is identified in the first field.

A block will always appear in the file first as a member of another
group (another block or the root). The second appearance of the block
usually defines the membership of the block. (In some cases a block
may appear in more than a single block in the course, in which case the
membership may be described in the third or fourth appearance of the
block ID.)

Course Structure Table, v1.1
Block Members -- Assignable units & other blocks
Block Member Member Member Member
root

AICC 6.4 Course Structure Table CMI Guidelines

Rev 1.1
11-Apr-94 168 CMI001

6.4.1 Example 1

Description This is a simple course that is described in three ways. The first
description is a diagram, the second is a table, and the third is the contents
of a Course Structure File.

APU Elect Pwr Powerplant

Course
Introduction

Block 1 Block 2

Elec, Part 1

Elec, Part 2

AU 1

AU 2

AU 3

Pwr, Part 1

AU 4

AU 5

Pwr, Part 2

Pwr, Part 3

AU 6

Example table The table below reflects the diagram above. Each course element in this
table uses the "Developer ID" -- the unique identifier assigned by the ISD
organization during development of the course.

Table for Introduction Course
Root AU 1 Block 1 Block 2
Block 1 AU 2 AU 3
Block 2 AU 4 AU 5 AU 6

Example file
contents

The records below reflect the table and diagram above. Each ID is a
"System ID" -- ID assigned by the system that generated the files for the
export of this course.

"block","member","member","member"
 "root","A1","B1","B2"
"B1","A2","A3",""
"B2","A4","A5","A6"

AICC 6.4 Course Structure Table CMI Guidelines

Rev 1.9
1-Jul-97 169 CMI001

6.4.2 Example 2

Description This is a simple course that was described in the introduction to this
chapter. It is described here in three ways. The first description is a
diagram, the second is a table, and the third is the contents of two key
files: the Descriptor File and the Course Structure File.

Electrical

AC DC Proc.

Power Plant

Fuel Oil Pneum. Proc.

Fuel

System Proc.

(Block)

(Block)

(Block)

(Assignable Units)

(Assignable Units)

(Assignable Units)

Example table The table below reflects the diagram above. Because each entry in the
file must be a unique identifier, the table also includes the exporting-
system generated ID (System ID).

Table for Example Course
Root Electrical

B1
Power Plant
B2

Fuel
B3

Electrical
B1

AC
A1

DC
A2

Procedures
A3

Power Plant
B2

Fuel
A4

Oil
A5

Pneumatics
A6

Procedures
A7

Fuel
B3

System
A8

Procedures
A9

AICC 6.4 Course Structure Table CMI Guidelines

Rev 3.5
2-Apr-01 170 CMI001

Example file
contents

The records below represent the contents of the Descriptor File, and
reflect the table and diagram above.

Filename: example.DES

"system_id","developer_id","title","description"
"A1", ”AC-01”, "AC Electrical",,
"A2", ”DC-01”, "DC Electrical",,
"A3", ”EP-01”, "Electrical Procedures",,
"A4", ”PP-01”, "Power Plant Fuel",,
"A5", ”PP-02”, "Power Plant Oil",,
"A6", ”PP-03”, "Power Plant Pneumatics",,
"A7", ”PP-04”, "Power Plant Procedures",,
"A8", ”FS-01”, "Fuel System",,
"A9", ”FS-02”, "Fuel Procedures",,
“B1”, ”BEP-01”, ”Electrical Power”,,
“B2”, ”BPP-01”, ”Power Plant”,,
“B3”, ”BFS-01”, ”Fuel”,,

Example file
contents

The records below represent the Course Structure File, and reflect the
table and diagram above.

Filename: example.CST

"block","member","member","member","member"
"root", "B1", "B2", "B3",
"B1", "A1", "A2", "A3",
"B2", "A4", "A5", "A6", "A7"
"B3", "A8", "A9", ,

AICC 6.5 Objectives Relationships File CMI Guidelines

Rev 1.1
11-Apr-94 171 CMI001

6.5 Objectives Relationships File

Description Objectives have complex and variable relationships to other elements of
a course. For instance, a lesson may cover several objectives. A single
objective may require mastery of several lessons. Other objectives may
require the mastery of many sub-objectives.

The Objectives Relationship file is able to define all of these
relationships. However, not all CMI systems depend upon objectives
for routing decisions. Not all objectives are critical to the functioning of
a CMI system.

This file is optional for course descriptions that do not have objectives
as prerequisites for assigning lessons. All objectives that are part of a
prerequisite are required in this file.

File type Table (Comma-delimited ASCII)

File name xxxxxxxx.ORT
The extension for this file is ORT. Any OS-legal set of characters (or
less) may be used for the primary file name.

Records Each record in this file describes the objectives that are included in a
given course element. (assignable unit, block, complex objective).

Fields The left-most field contains the exporting-system generated ID of a
course element, all the fields to the right list the system IDs of
objectives that are in that element.

AICC 6.5 Objectives Relationships File CMI Guidelines

1-Sep-99 172 CMI001

Example table In this table, B13 is a block with 3 objectives requiring mastery to
consider the block complete.

A48 is a lesson that contains two objectives which must be mastered
before the lesson is complete.

J16 is a complex objective requiring three other objectives be complete
before it is considered complete.

B14 is a block which requires the mastery of 5 objectives before it is
complete.

Objectives Relationships Table, v1.1
Course Element Member objectives

Course_Element Member Member Member Member Member
B13 J23 J24 J25
A48 J27 J28
J16 J93 J94 J95
B14 J16 J26 J29 J30 J31

Example file
contents

The records below are extracted from the beginning of a hypothetical
file. They reflect the table above. The maximum number of fields
required in this file is 6.

"course_element","member","member","member","member","member"
"B13","J23","J24","J25",,
"A48","J27","J28",,,
"J16","J93","J94","J95",,
"B14","J16","J26","J29","J30","J31"

AICC 6.6 Prerequisites File CMI Guidelines

Rev 3.0
1-Sep-99 173 CMI001

6.6 Prerequisites File

Description Sometimes it may be desirable to prevent a student from entering a
lesson until he has met certain prerequisites. This file allows that
sort of constraint to be placed on each block or assignable unit (AU)
in a course.

File type Table (Comma-delimited ASCII)

File name xxxxxxxx.PRE
The extension for this file is PRE. Any OS-legal set of characters may
be used for the primary file name.

Records Each record allows a single prerequisite (Level 2) or list of prerequisites
(Level 3b) to be defined for a block or AU.

Fields The first record identifies the order of the fields with the field names:
Structure_Element, and Prerequisite.

The system generated ID is in the structure_element field. The
prerequisite field is an expression (See the section on Logic
Statements) that identifies the course elements that determine whether a
student can begin the block or AU.

Prerequisites File
Level 2 Structure Element

(Block or AU)
Prerequisite

(Block or AU)
Structure_Element Prerequisite

System ID System ID
System ID System ID

AICC 6.6 Prerequisites File CMI Guidelines

Rev 3.0
1-Sep-99 174 CMI001

Prerequisites File
Level 3a Structure Element

(Block or AU)
Prerequisite Logic Statement

(Blk, AU or Obj)
Structure_Element Prerequisite

System ID System ID & System ID
System ID System ID | System ID
System ID System ID
System ID System ID & (System ID | System ID)

Usage rules When there is no prerequisite defined for an AU or block, the student
may select that course element at any time.

When there is no prerequisite for an AU that is part of a block, and the
block does have prerequisites, then that AU may be taken anytime the
block prerequisites are met.

When an AU or block does not appear in the file, it is assumed to be an
AU or block with no prerequisites. (i.e. The above rules apply.)

Example file
contents

The records below are extracted from the beginning of a hypothetical
file.

structure_element, prerequisite
"B13","B12 & A14"
"A48","B12 | B11"
"A49","A48"
"A50","B12 & (A15 | A16)"

AICC 6.6 Prerequisites File CMI Guidelines

Rev 3.0
1-Sep-99 175 CMI001

6.6.1 Assignable Unit and Objective Status

Assignable Unit
(lesson) status

Prerequisites are a listing of those course elements that a student has
passed or completed. Completed is a status. Lesson status is often
determined within the lesson by the logic designed into it.

There are six possible statuses for each lesson.

• Passed

• Completed

• Browsed

• Failed

• Not attempted

• Incomplete

In any logic statement, a structure element may be made equal to
any of these statuses. However, if not explicitly identified these five
statuses are resolved into two statuses: complete or incomplete as
follows:

Complete = true

• Passed

• Completed

Incomplete = false

• Browsed

• Failed

• Not attempted

• Incomplete

In a prerequisite record the following statement

"A4","A3"

Means that the status of lesson 3 must be Complete or Pass before
the student can begin lesson 4. Explicitly, this would be expressed
as

AICC 6.6 Prerequisites File CMI Guidelines

Rev 1.8
3-Mar-97 176 CMI001

"A4","A3=P | A3=C"

In a prerequisite record the following statement

"A4","A1 = P & A2=P & A3 = P"

Means that the status of lessons (assignable units) 1, 2, and 3 must
be Pass before the student can begin lesson 4. If any one of those
lessons was completed instead of passed, that would not satisfy the
prerequisite for lesson A4.

Objective status Objective statuses can also be used to determine if a student has met
the prerequisites for a lesson or a block. Objective statuses are
determined by the lesson. The six possible statuses sent to the CMI
system are resolved into complete or incomplete the same way they
are for lessons.

In an objectives oriented course, the following prerequisite record
could appear:

"A4","J1 & J2 & J3"

Meaning that the student must complete or pass three objectives
before entering assignable unit number 4.

AICC 6.6 Prerequisites File CMI Guidelines

Rev 3.0
1-Sep-99 177 CMI001

6.6.2 Logic Statements

Logic statement A logic statement is a list of course elements (block, assignable unit,
objective) with their status (Complete, Incomplete, etc.) separated
by logic operators (&, |, ~). A special logic statement is the single
word "never". This is used to prevent a student from ever entering
the lesson in the mode (normal, review, browse) for which the
record is applicable.

Logic operators A logic operator describes how course elements are to be combined
to determine whether a logical prerequisite is complete or
incomplete. This table lists the available logic operators.

Operator Meaning Symbol
and &
or |
not ~

equals =
group or set { }

separator for set
members

,

complete X number
out of a set

X*{ }

evaluate first ()

Definitions When evaluating course elements in a logic statement, and status is not
explicitly stated, one of two states is possible: complete or incomplete.5

These correspond to the traditional logical values of true and false. The
following operators can be used to create a logical statement with
course elements.

5 These Boolean statuses are defined in the section titled “Assignable Unit and Objective
Status” on page 175.

AICC 6.6 Prerequisites File CMI Guidelines

Rev 3.0
1-Sep-99 178 CMI001

and All elements separated by an & must be compete for the
expression to be evaluated as complete.

A34 & A36 & A38
Assignable units number 34, 36, and 38 must all be
completed or passed for the group to be considered
complete.

or If any of the elements separated by an | are passed the
expression is considered true.

A34=P | A36=P | A38=P
If any one of the lessons, 34, 36, or 38, are passed
then the group is considered complete.

not An operator that returns incomplete (false) if the
following element or expression is complete, and returns
complete (true) if the following element or expression is
incomplete (false).

A34, ~A35
The student may enter unit 34 as long as unit 35
has not been completed (that is, the status of A35
must be Browsed, Incomplete, Failed, or Not
attempted). If assignable unit 35 is complete, the
student may not enter unit 34.

equals Evaluates true when elements on both sides of the sign
have the same value.

set A list of course elements separated by commas and
surrounded by curly brackets -- { }. A set differs from a
block, in that the set is defined only for purposes of the
prerequisite (or completion requirements) file. A set has
no effect on the structure of the course.

{A34, A36, A37, A39}
Assignable units 34, 36, 37, and 39 are part of a
set.

AICC 6.6 Prerequisites File CMI Guidelines

Rev 3.0
1-Sep-99 179 CMI001

separator The comma is used to separate the members of a set.
Each member of the set can be evaluated as a
Boolean element – complete (true) or incomplete.
(false)

{A34, A36, A37, A39}
Assignable units 34, 36, 37, and 39 are each
separated by a comma in this set.

X* X is an integer number. This operator means that X
or more members of the set that follows must be
complete for the expression to be complete (true).

“A38”, “3*{A34, A36, A37, A39}”
Any three or more of the following units – 34,
36, 37, 39 -- must be complete before the
student can enter unit 38.

evaluate 1st The expression inside the parenthesis () must be
evaluated before combining its results with other
parts of the logical statement. Parentheses may be
nested.6

“A39”, “A34 & A35 | A36”
In this statement, completing A36 all by itself
enables the student to enter A39.
“A39”, “A34 & (A35 | A36)”
Adding the parenthesis, makes it necessary to
complete at least two units (A36 all by itself is
no longer enough) to enter unit A39.

Examples These records are from prerequisites files.

6 Operator precedence is the same as in the C programming language – including the use of
parenthesis.

AICC 6.6 Prerequisites File CMI Guidelines

Rev 3.0
1-Sep-99 180 CMI001

Level 3a
A31,A23 & A287

Means that before the student can begin Assignable Unit #31 in the
normal mode, he must complete units 23 and 28. This record

Level 3a
"A31","3*{A23 , A25 , A26 , A28 , A29}"8

Means that before he begins unit 31 in the normal mode, the student
must complete at least three of the five lessons listed in the parentheses.

Level 3a
"A31","3*{A23 , (A25 & A26) , A28 , A29}"

In this case units 25 and 26 together comprise one member of the
set. Therefore, the student may have to complete 4 units in order to
enter lesson (assignable unit) number 31. For instance, having
completed A23, A25, and A28, he would NOT be able to enter
lesson 31.

Level 3a
"B31","~J31"

Means that he may begin any unit in block 31 if he has not completed
objective 31 (that is, if Objective 31 has a status of Incomplete, Fail, or
Not Attempted the student may begin Block 31). After completing
objective 31, he may not enter block 31.

Level 3a
"B31","~(J31=F)"

7 Quotation marks are not required in a comma delimited data file unless there are commas in
one of the fields. However, quotation marks are commonly used around all fields for the sake of
consistency.
8 In this record, quotation marks are required. Otherwise, the commas separating set members
would be interpreted as field separators.

AICC 6.6 Prerequisites File CMI Guidelines

Rev 3.0
1-Sep-99 181 CMI001

Means that he may begin any unit in block 31 if he has not failed
objective 31 (that is, if Objective 31 has a status of Fail, the student
may not begin Block 31). After failing objective 31, he may not enter
block 31.

Level 3a
A15, A14 & ~J15

Means that before he begins unit 15 the student must complete unit
14 and not have completed objective 15. If he has mastered
objective 15 he may not enter lesson 15. If he has not completed
lesson 14, he may not enter lesson 15.

Level 3a
A24, ~(J13 & J14 & J15)

Means that lesson 24 may be started if any of the following
objectives are not complete: 13, 14, and 15. Completing one or two
of these objectives does not prevent the student from entering lesson
24. Completing all three objectives will prevent entry into 24.

AICC 6.7 Completion Requirements File CMI Guidelines

1-Sep-99 182 CMI001

6.7 Completion Requirements File

File justification While lesson and objective status is frequently determined within
the lesson by the logic designed into it, this is not always true. For
instance, there may be an assignable unit designed to pre-test the
student. By demonstrating mastery of some objectives in this pre-
test, the student may get credit for passing parts of a lesson – or even
a complete lesson – without ever having seen it

In other words, the CMI system may sometimes determine the status
of a element by factors outside the element itself. Similarly block
and complex objective status is defined in terms of other structure
elements. Therefore, block and complex objective status must be
determined by the CMI system.

One additional function that this file may perform, is to enable the
course designer to tell the CMI system to launch the next lesson in a
sequence automatically. This ability allows the seamless integration
of several assignable units.

The Completion Requirements file is designed to allow the explicit
specification of when an assignable unit, block or objective should
be assigned a specific status when that status does not conform to
the defaults. It is essentially an exception file.

Default status Block
Block status is determined by the status of all of its
members. Unless specially defined in a completion
requirements file, a block is considered complete when
all members of the block are complete.

Complex
objective

A complex objective is considered complete when all of
its members are complete.

Lesson
Lesson status is determined by the lesson when the
student leaves the lesson. Additionally, a pass or fail
status can be determined by the CMI by comparing the
lesson’s score with the lesson’s mastery score.

Simple
objective

A simple objective’s status is determined when a lesson
sends information to the CMI to indicate its status.

File type Table (Comma-delimited ASCII)

AICC 6.7 Completion Requirements File CMI Guidelines

8-May-00 183 CMI001

File name xxxxxxxx.CMP
The extension for this file is CMP. Any OS-legal set of characters may
be used for the primary file name.

Record rules Each record in this file defines how the CMI system may determine the
status of an assignable unit, block or objective.

There may be an unlimited number of logic statements to determine the
status of each lesson. For instance, just to define Pass, Fail, Complete,
and Incomplete for a single lesson would require 4 completion records.

The order of these records is significant. To determine the status of a
lesson, the CMI system should evaluate each statement relating to the
lesson in the same order in which it appears in this file. The first
statement to evaluate True determines the status of the lesson.

It is important that the order of these records be respected by the CMI
system during the import and export of the Completion Requirements
file.

Fields Each record has three or four parts (fields). These fields may be in any
order. The first record identifies the order with the field titles:
Structure_element, Requirement, Result and Next. The next field is
optional for any record.

STRUCTURE_ELEMENT: This field contains the exporting-system
generated ID of an assignable unit, block or objective.

REQUIREMENT: A logic statement that enables a true or false decision
to be made by the CMI system. The logic notation is the same as
described in Section 6.6.3.

RESULT: This field indicates the status of the element when the
requirement statement is found TRUE. This does NOT mean that if a
PASS is in the result field and the requirement statement is false, then
FAIL must be assumed. If the requirement statement evaluates as
FALSE, the status of the element is determined by other factors – either
an additional completion record or default.

NEXT: This field identifies a lesson to be launched automatically
without pause by the CMI system. This lesson is to be launched
whenever the result in the RESULT field is achieved. When this field is
blank, a typical behavior of the CMI would be to return the student to
the course menu.

AICC 6.7 Completion Requirements File CMI Guidelines

8-May-00 184 CMI001

RETURN. This field indicates to which assignable unit the CMI shall
return after completion of the NEXT AU. This field takes priority over
the NEXT field that may be in the completion requirements file for the
AU from which the CMI is returning.

Level differences Level 2 Completion Requirements files are limited to a single element
in the logic statement. Level 3a files may have complex logical
expressions as well as a single element.

Completion Requirements File
Level 2

Course Element
(Block Objective or

AU)

Completion Logic Statement
(Blk, AU or Obj)

Status
Result if

True

Next AU
if Result
Achieved

Return to
after Next

Structure_Element Requirement Result Next Return
System ID System ID passed Sys ID Sys ID
System ID System ID=passed passed
System ID System ID complete Sys ID

Completion Requirements File
Level 3A

Course Element
(Block Objective or

AU)

Completion Logic Statement
(Blk, AU or Obj)

Status
Result if

True

Next AU
if Result
Achieved

Return to
after Next

Structure_Element Requirement Result Next Return
System ID System ID=P & System ID=P Pass Sys ID Sys ID
System ID 2*{System ID, System ID, System ID} Pass
System ID System ID Comp Sys ID
System ID System ID & (System ID | System ID) Comp

Example records The records below are extracted from the beginning of a hypothetical
file.

Level 2
Structure_Element, Requirement, Result, Return
A4, A1, Passed

If the assignable unit A1 gets a status of completed or passed, then the
assignable unit A4 is given the status of pass. If the student later enters
A4, the CMI must pass a lesson_status of P,A.

Level 2
Structure_Element, Requirement, Result, Next, Return
A4, A4=P, Passed, A5

AICC 6.7 Completion Requirements File CMI Guidelines

8-May-00 185 CMI001

If the assignable unit A4 gets a status of passed, then the assignable unit
A5 is launched automatically by the CMI system. After finishing A5
the student continues to any AU determined by the prerequisites file or
the system defaults.

Level 2
Structure_Element, Requirement, Result, Next, Return
A4, A4=F, Passed, A5, A4

If the assignable unit A4 gets a status of failed, then the assignable unit
A5 is launched automatically by the CMI system. After the student
finishes A5 (any status) he is automatically returned to A4.

Level 2
Structure_Element, Requirement, Result, Next, Return
A4, A1, Pass
A4, A2, Pass
A4, A3, Pass

If the assignable unit A1 or A2 or A3 gets a status of complete or pass,
then the assignable unit A4 is given the status of pass. Because the
records are evaluated sequentially and the first to evaluate True
determines status, if A1 is Passed then it makes no difference whether
A2 and A3 are passed or failed or not attempted.

AICC 6.7 Completion Requirements File CMI Guidelines

8-May-00 186 CMI001

Level 2

Structure_Element, Requirement, Result, Next, Return
A4, A4, Passed, A5
A17, A17= failed, failed, A4, A17

If A4 is passed or completed then the student is automatically assigned
to A5. If the student fails A17, he is automatically assigned back to A4.
When he finishes A4 (even if his status is "passed") he must return to
A17.

Level 2

Structure_Element, Requirement, Result, Next, Return
A4, A4, Passed, A5
A17, A17, passed, A18
A17, A17= failed, failed, A4, A18

This is similar to the previous example. The only difference is that 1) if
the student passes A17 he is automatically assigned to A18, and 2) if the
student fails A17, and finishes A4, he must return to A18 (not A17 as in
the previous example).

Level 2
Structure_Element, Requirement, Result
B4, A3, Pass

If the assignable unit A3 gets a status of complete or pass, then the
entire Block 4 (and all of its members) is given the status of pass.

Level 3a
“Structure_Element”, ”Requirement”, ”Result”, "Next"
"B13","J23=P & J24=P & J25=P & J 26=P", “Completed”

Block 13 is not dependent on completion of its members (assignable
units and other blocks) but rather on passing of objectives.

A4 A5
A17

A4 A5
A17 A18

AICC 6.7 Completion Requirements File CMI Guidelines

8-May-00 187 CMI001

Level 3a
“Structure_Element”, ”Requirement”, ”Result”
"B8", "A14 | A15 | A16",”Completed”

Block 8 is considered complete when any one of these three assignable
units is complete or passed.

Level 3a
“Structure_Element”, ”Requirement”, ”Result”
"B21", "3*{A36 | A37 | A38 | A39 | A40}", “Completed”

This tells the CMI system that the block is complete when any 3 of
these 5 assignable units is complete or passed. An example of when
this might be useful would be in a block with 5 exercises. The course
designer wants the student to perform at least 3 of the five exercises.
That is what this logic statement is indicating.

Level 3a
“Structure_Element”, ”Requirement”, ”Result” , "Next"
"B13","A8=P | A9=P | A10=P | A11=P", “Incomplete”
"B13"," A8=P & A9=P & A10=P & A11=P ", “Completed”

Notice that in this case, Block 13 will never be considered
Complete. The first statement will always evaluate True before the
second. And the first statement to evaluate True determines the
status of the course element.

Level 3a
“Structure_Element”, ”Requirement”, ”Result” , "Next"
"B13","A8=P & A9=P & A10=P & A11=P ", “Completed”
"B13","A8=P | A9=P | A10=P | A11=P", “Incomplete”

This corrects the problem in the example above. Now, as soon as
the student has passed a single lesson in the block the block status
will be changed from Not attempted to Incomplete. When the
student has passed all of the lessons, the status of the block will
change to Complete because the first statement will evaluate True
and the CMI system will never get to the second statement to re-
evaluate the Block status.

Level 2
“Structure_Element”, ”Requirement”, ”Result”, "Next"
"A14", "A14=F",”Fail”,"A36"

If the student fails lesson A14, he is immediately forced to go to the
remedial lesson A36.

Rev 3.0
21-Sep-99 188 CMI001

6.8 Structure Considerations

This section contains a series of examples that may clarify many of the
principles that have been discussed in this chapter.

Example 1 Five lessons to be taken in sequence from 1 to 5. Student has to select
the next lesson.

Prerequisite file
EXAMPLE1.PRE

"Structure_Element","Prerequisite"
"A2","A1"
"A3","A2"
"A4","A3"
"A5","A4"

Example 2 Five lessons. One must be taken first. Two, three, four and five can be
taken in any order.

Prerequisite file
EXAMPLE2.PRE

"structure_element","prerequisite"
"A2","A1"
"A3","A1"
"A4","A1"
"A5","A1"

Example 3 In this block (B3) there are 6 assignable units. A mastery test (A14), 4
lessons, and a remedial unit (A18). Each lesson has an objective
associated with it. The objective just happens to have the same
identifying digit as the lesson. Lesson A15 has objective J15, lesson
A16 has Objective J16, etc.

Upon entering the block the student has the option of taking lesson 15 or
the test (A14). The lessons must be taken in order. Objectives must be
specified explicitly if they are in the entry criterion.

Rev 3.0
21-Sep-99 189 CMI001

Objectives
relationship file
EXAMPLE3.ORT

Structure_Element,Member,Member,Member,Member
A14, J15, J16, J17, J19
J15, A15
J16, A16
J17, A17
J19, A19

Completion
requirements file
EXAMPLE3.CMP

Structure_Element,Requirement,Result,Next,Return
B3,J15 & J16 & J17 & J19, passed
A17, A17=failed, failed, A18, A17
J15, A15=passed, passed
J16, A16=passed, passed
J17, A17=passed, passed
J19, A19=passed, passed

B3

A15
A19

A16

A17

A18

J15 J16

J17 J19
A14

J15

J16

J17
J19

Rev 3.0
21-Sep-99 190 CMI001

Objectives The objectives relationship table shows that A15 is a member of
objective J15, and A16 is a member of J16, and so forth. When this is
the case, the completion requirement entries shown above for the
objectives are superfluous. By default, an objective is considered
passed when all of its members are passed.

Prerequisite file
EXAMPLE3.PRE "Structure_Element","Prerequisite"

"A16","J15"
"A17","J15 & J16"
"A19","J15 & J16 & J17"

Remediation The Completion Requirements file forces the student into the
remediation unit if he fails objective 17. After finishing the remedial
unit, A18, he is forced to return to A17.

25-Oct-94 191 CMI001

7.0 LESSON EVALUATION DATA

Single student
covered

Lesson evaluation data is contained in several files. The file names are
passed to the lesson. If the file already exists, the lesson appends the
data. If the file does not exist, the file is created and the data deposited.

The CMI system therefore, determines if multiple lessons append data
to a single file, or if each lesson creates a different file. Normally, it is
expected that a single file will contain the data accumulated over
multiple lessons for a single student.

With this information, analysis tools and CMI systems are able to
assemble information on multiple lessons, multiple uses of the same
lesson, and multiple students.

Raw data The analysis of the information is not the subject of these guidelines.
What is covered here is essentially raw data.

AICC 7.0 Lesson Evaluation Data CMI Guidelines

25-Oct-93 192 CMI001

Chapter contents The following is a table of files and their fields.

Section Files Fields
7.1 Comments

• Name: any.any (name defined by CMI)
• Contents: Comments made by student while

taking a lesson.
• Type: Table (Comma Delimited)

Course ID
Student ID
Lesson ID
Date & Time
Location
Comment

7.2 Interactions
• Name: any.any (name defined by CMI)
• Contents: Detailed information on each

interaction measured as the student takes a
lesson.

• Type: Table (Comma Delimited)

Course ID
Student ID
Lesson ID
Date & Time
Interaction ID
Objective ID
Type interaction
Correct response
Student response
Result
Weighting
Latency

7.3 Objectives Status
• Name: any.any (name defined by CMI)
• Contents: Repeat of information that is in the

CBT to CMI file under the group
[Objectives_Status].

• Type: Table (Comma Delimited)

Course ID
Student ID
Lesson ID
Date & Time
Objective ID
Local ID
Score
Status
Mastery time

7.4 Path
• Name: any.any (name defined by CMI)
• Contents: A description of the path the

student took through the lesson. (What he
experienced first, second, third, and so forth.)

• Type: Table (Comma Delimited)

Course ID
Student ID
Lesson ID
Date & Time
Element location
Status
Time in element

AICC 7.1 Comments File CMI Guidelines

12-Oct-98 193 CMI001

7.1 Comments File

Description This is a journal file that contains freeform feedback from the student.
It is a duplicate of the [Comments] group that is passed to the CMI
system in the CBT-to-CMI file.

File type Table (Comma-delimited ASCII)

File name xxxxxxxx.xxx
The file name is determined by the CMI system and provided to the
lesson in the CMI-to-CBT file group [Evaluation] with the keyword
Comments_file=.

Fields Each record in this file describes either a whole or part of a comment.
Because a field is limited to 255 characters, some comments may have
to extend over several records.

Records The first record must contain the AICC field identifier for each field in
the file. The field identifiers are not case sensitive. Subsequent records
have the field information in the same order as the identifiers in the first
record.

Comments File: the fields
Course ID Student ID Lesson ID Date Time
Course_ID Student_ID Lesson_ID Date Time

Continued Location Comment
Location Comment

AICC 7.1 Comments File CMI Guidelines

12-Oct-98 194 CMI001

Example file
contents

The four records below are extracted from a hypothetical file and
represent a single comment.

"course_id","student_id","lesson_id","date","time","location",
"comment"

"MD80FT-2","ua36","APU1","1994/01/15","00:14:23","f3", "I think
that the word received is not spelled correctly. The reason I'm
not sure is because of the colors used for the background and
foreground text colors. Purple on orange is really hard to
read sometimes."

"MD80FT-2","ua36","APU1","1994/01/15","00:14:36","f16", "Why
did you change colors? I was just getting used to purple on
orange."

AICC 7.1 Comments File CMI Guidelines

12-Oct-98 195 CMI001

7.1 Comment Fields

Course ID Description This ID is supplied by the CMI system in the CMI-to-
CBT file under the group name [Evaluation] with the
keyword Course_ID=.

See Course_ID description on page 82.

Field ID Course_ID

Student_ID= Description See Student_ID description on page 64.

Field ID Student_ID

Lesson ID Definition Alphanumeric identifier for the lesson.

This is unique to, and inherent in each lesson. It is
normally determined by the course/lesson designer at the
time of creation.

See also Developer ID on page 164.

Field ID Lesson_ID

Data
format

Alphanumeric. All characters, inside the quotation
marks are significant.

Examples "FT747-4-302"

"A330.MT.246"

AICC 7.1 Comments File CMI Guidelines

12-Oct-98 196 CMI001

7.1 Comment Fields (cont.)

Date Definition The calendar day on which the record is made

Data
format

YYYY/MM/DD
Four digits for year, two for month, and two for day.
Separated by slashes. Single digit months and days must
be zero padded.

Examples "1993/01/15"
"2001/12/03"

.
Time Definition Identification of when the comment is made. This

represents the time of day with a 24 hour clock.

Field ID Time

Usage rules Three numbers, separated by colons, are always required,
even if only hours and minutes are represented.

Data
format

Same as Time= keyword on page 76.

Location Definition Indication of where in the lesson the comment is made.

Field ID Location
Data
format

This may be provided in any way the designer wanted to
identify the different elements in a lesson -- by frame, by
interaction, by page, etc.

Examples "frame 13"
"13"
"f6"
"Interaction 12"

AICC 7.1 Comments File CMI Guidelines

Rev 2.1
18-Jun-98 197 CMI001

7.1 Comment Fields (cont.)

Comment Definition The recorded statement of a student.

Field ID Comment

Data
format

Text enclosed by quotation marks.

If the student places double quotes in his comment ("),
the system must change them to single quotes (') before
attempting to store them in a comma delimited file.

If it is desired to place multiple lines in a single record
(total characters must be 255 or less) it is possible to
embed a carriage return in the text to replace the carriage
return and line feed characters. This is done by using
<CR> (less-than sign, the letter c, the letter r, and the
greater-than sign)

Examples "No<cr>way<cr>Jose."

"I still thing the anser is B."

AICC 7.2 Interactions File CMI Guidelines

25-Oct-93 198 CMI001

7.2 Interactions File

Interaction
definition

In this context, an interaction is a recognized and recordable input or
group of inputs from the student to the computer. All of the items in
this group are related to a recognized and recorded input from the
student (or lesson user.)

If the program does not recognize that the student is attempting to input,
then the input is not an interaction in this limited use of the word. For
instance, a program may present a question on the screen, and wait for
the student to touch or click on the correct answer. The program may
not be designed to look at keyboard inputs during this question. If the
student inputs the correct answer by typing a letter, on the keyboard, it
is not an interaction by this definition, because it is not recognized and
therefore not recorded by the computer.

Notice that by this definition, a single interaction can involve more than
one discrete measurable input. A single interaction may involve several
inputs. For instance, assume there is a piano-like keyboard connected to
the computer and the student is asked to play a chord. The interaction
involves pressing and holding three keys that make up the chord.
Therefore, each note in the chord may be considered one input. with the
three keys together making up the entire input to the single interaction.

Single interaction
or many?

In grouping inputs and determining what constitutes a single interaction
as opposed to a series of interactions, the designer of the lesson is the
final arbiter.

However, in grouping inputs and deciding whether multiple inputs are
to the same interaction or separate interactions, consider time. If all
inputs may be provides simultaneously, or rapidly in any order, they are
probably inputs to the same interaction. If they are going to be provided
in a sequence, and especially if the sequence is important, they are
probably inputs to separate interactions.

Description This group provides extensive information on student interactions which
the designer of the lesson wants to preserve and analyze. Normally, the
interactions preserved are student responses to a question

File type Table (Comma-delimited ASCII)

AICC 7.2 Interactions File CMI Guidelines

Rev 2.1
18-Jun-98 199 CMI001

File name xxxxxxxx.xxx
The file name is determined by the CMI system and provided to the
lesson in the CMI-to-CBT file group [Evaluation] with the keyword
Interactions_file=.

Fields The first record in the file contains the field identifiers. The field
identifiers can be in any order; however the order in which the
identifiers appear, establishes the order for the fields that occur in each
subsequent record. Each subsequent record describes a single
interaction.

Interactions File: the fields
Course ID Student ID Lesson ID Date Time
Course_ID Student_ID Lesson_ID Date Time

Interaction ID Objective ID Type
Interaction

Correct
Response

Response
Value

Interaction_ID Objective_ID Type_Interaction Correct_Response Response_Value

Continued Student
Response

Result Weighting Latency

Student_Response Result Weighting Latency

Example file
contents

The four records below are extracted from a hypothetical file and
represent a single comment.

"course_id","student_id","lesson_id","date","time","interaction_id","objecti
ve_id","type_interaction","correct_response","student_response","result","we
ighting","latency"
"A340ft-2",”jqh085”,"APU1","1994/01/15","15:14:23",37,ft1016,C,A,C,W,,
00:00:3
"A340ft-2",”wam016”,"APU1","1994/01/15","15:14:23",38,ft2223,t,t,t,,,
00:00:01
"A340ft-2",”dag085”,"APU1","1994/01/15","15:14:23",39,ft1134,C,B,B,C,,
00:00:02
"A340ft-2",”trd018”,"APU1","1994/01/15","15:14:23",40,ft1156,C,C,C,C,,
00:00:04

AICC 7.2 Interactions File CMI Guidelines

18-Jun-98 200 CMI001

7.2 Interactions Fields

Course ID Description See the Course_ID keyword on page 82

Field ID Course_ID

Student ID Description See the Student_ID keyword on page 64

Field ID Student_ID

Lesson ID Description See the Lesson ID field under Comment file on page 195

Date Description See the Date field on page 196

Time Definition The chronological point at which a student may begin
interacting.

Format See Time field under Comments file on page 76.

Interaction ID Definition Unique identifier for an interaction.

Identifier created by the lesson designer/developer.

Field ID Interaction_ID

Format Alpha-numeric string. May include internal spaces.

Examples "1"
"apu2"
"fuel2-04"

AICC 7.2 Interactions File CMI Guidelines

8-May-00 201 CMI001

7.2 Interactions Fields (cont.)

Objective ID Definition Unique identifier for an objective, or complex objective.
Used outside of this file to refer to a specific objective.
An Objective_ID is one kind of Developer_ID.

See also Developer ID on page 164.

Field ID Objective_ID

Format See the J-ID.2 keyword on page 86 for data format and
example names.

Type interaction Definition Indication of which category of interaction is recorded.

The type of interaction determines how the interaction
response should be interpreted. Seven possible question
types are defined below. They are not meant to be
limiting. There are other types of questions. However, if
one of these seven types is used, these are the identifiers
that match those types.

Field ID Type_Interaction

Data
Format

A keyword is used to describe each interaction. Only the
first letter is significant and capitalization is ignored.

Type of
Question

Keyword Description

True/False true-false A question with only two possible responses.
Multiple
Choice

choice A question with a limited number of predefined
responses from which the student may select.
Each response is numbered or lettered. One or
more responses may be correct.

Fill in the
Blank

fill-in A question with a simple one or few-word answer.
The answer/response is not predefined, but must
be created by the student (as opposed to selected).

Matching matching A question with one or two sets of items. Two or
more of the members of these sets are related.
Answering the question requires finding and
matching related members.

AICC 7.2 Interactions File CMI Guidelines

Rev 3.0
1-Sep-99 202 CMI001

Simple
Performance

performance A performance question is in some ways similar to
a multiple choice question. However, instead of
selecting a written answer, the student must
perform a task or action.

This task or action when input to the computer is
translated and stored as one or more alpha-numeric
codes.

These are some performance questions:

Perform the next action required to set the fuel
panel for take-off.

Sequencing sequencing In a sequencing question, the student is required to
identify a logical order for the members of a list.
For instance, he or she may be asked to place a
series of events in chronological order. Or the
student may be asked to rank a group of items by
the order of their importance.

Likert likert A Likert question offers the student a group of
alternatives on a continuum. The response is
generally based on the student's opinion or
attitude.

Typical scales are

 FROM Understand completely TO Do not

understand at all
Numeric numeric Simple number with or without a decimal point

required answering the question. Correct answer
may be a single number within a range of numbers.

Examples "true-false"
"multiple choice" -- this is type matching
 -- only the first letter is significant
"C"
"F"
"Performance"

AICC 7.2 Interactions File CMI Guidelines

1-Sep-99 203 CMI001

7.2 Interactions Fields (cont.)

 Correct response Definition Description of possible responses to the interaction.
There may be more than one correct response, and some
responses may be more correct than others.

Field ID Correct_Response

Data
format

Normally, responses are considered case insensitive.
However, in instances where case is important in judging
a response, the correct response is preceded by <case>.

If there is more than one response described, a semi-
colon separates the responses.

If the correct response requires multiple inputs, then the
required inputs are surrounded by a curly bracket -- { }.

•••• True/ False

A single character or numeral. Legal characters are
0,1,t,and f. 0 corresponds to false. If the response is
a complete word (i.e. "true") only the first letter is
significant.

•••• Choice:

One or more characters separated by a comma..
Integers (0..9), letters (a..z) or both may be used.
Each possible response is limited to a single
character. If there are more than 26 possibilities,
then a performance type response must be used.

Normally, there is only one correct response to a
CHOICE question. But two other possibilities exist.

AICC 7.2 Interactions File CMI Guidelines

8-May-00 204 CMI001

7.2 Interactions Fields (cont.)

1) There is more than one correct response. The
answer is considered correct when any of these
alternatives is selected. However, one of these
responses may be more correct than the others.

2) Sometimes, a question may have two or three
correct alternatives, and the student must select
all of these alternatives to get the question
correct. In these cases, the correct responses are
grouped by surrounding them with curly brackets
-- { }.

•••• Fill-in:

An alphanumeric string. Spaces after the = are
ignored up to the first printable character. After the
first printable character, spaces are significant.

• Numeric

A single number. The number may or may not have
a decimal.

•••• Likert -- likert (or L or l)

There is no incorrect response for a Likert question.
The Correct_Response field may be left blank.

•••• Matching:

Pairs of identifiers separated by a period. Each
matching possibility consists of a source and a target
(or stem and alternative). Each source and target
possibility must have a unique identifier. An
identifier can be an integer number or a letter.

AICC 7.2 Interactions File CMI Guidelines

8-May-00 205 CMI001

7.2 Interactions Fields (cont.)

Two integer numbers or letters separated by a period
represent the source and target (or stem and
alternative). If there is more than one matching pair
is considered correct in the interaction, the pairs are
separated by a comma.

If more than one matching pair is required to consider
the interaction response correct, the pairs must be
separated by commas and surrounded by curly
brackets.

•••• Performance:

Alpha-numeric field limited to 255 characters.

There are three things that distinguish a
Performance response from a Choice response.

1) Because a choice response is limited to a single
character there can be no more than 36
alternatives (a...z and 0...9). With a performance
response, there can be thousands of alternatives.

2) In a choice response the order of the answers, or
the sequencing of the inputs is irrelevant. In a
performance response, sequence is significant and
may be used in judging the response.

3) In a performance response, a range of correctness
may be specified. For instance, a student could
be asked to adjust the throttle for cruise. A
throttle angle of 34 to 38 degrees could be an
acceptable response.

AICC 7.2 Interactions File CMI Guidelines

8-May-00 206 CMI001

7.2 Interactions Fields (cont.)

When a PERFORMANCE question has a range of
correct responses, the range is expressed as two
numbers separated by two dashes or hyphens. There
must be two dashes to make sure that it cannot be
confused with a minus sign preceding a number.

When a PERFORMANCE question has a sequence
of correct responses, each element of the sequence is
separated by a comma.

Correct answers may be a sequence of ranges.

When sequence is not important, the elements of the
response must be surrounded by a curly bracket.

•••• Sequencing

In a performance question, the order in which the
actions are performed, or the order in which the
elements are identified is important.

In a sequencing question, the elements may be
identified in any order. The final positioning of the
elements is used to determine correctness, not the
order in which they were re sequenced.

Examples Choice
Example 1

"b; d"
-- The response is considered correct when the student
-- selects either "b" or "d".

Choice
Example 2

"{b,d}"
-- The response is considered correct only when the
-- student has selected both "b" and "d" in his response
-- to the question

Matching
example 1

"1.c; 2.b; 3.a; 4.d"
-- answer is considered correct if any one of these four
-- matches is made by the student

AICC 7.2 Interactions File CMI Guidelines

8-May-00 207 CMI001

7.2 Interactions Fields (cont.)

Matching
example 2

"{1.c,2.b,3.a,4.d}"
-- answer is considered correct only if all of these four
-- matches is made by the student

Matching
example 3

"{3.4,1.6,5.2}"
-- answer is considered correct only if all of these three
-- matches is made by the student

Matching
example 4

"{a.e, d.g, c.f, b.h};{a.h, d.g, c.f, b.h}"
-- Student must make four matches to have answer
-- judged correct. However, he may match "a" to
-- either "e" or "h" and still have a correct match.

Mixed
examples

"<case> Washington"

"2300-2400"
-- This can only be legal as a response to a fill-in
-- question. If it represents a range on a performance
-- question, there must be two hyphens.
"2300 -- 2400"

"b,c,e,a,d"
-- A sequencing question. This is a single response.

"23291"
-- Notice that for some types of questions, large
-- numbers cannot have commas in them. 23,291
-- could be interpreted as two correct alternative
-- responses.

AICC 7.2 Interactions File CMI Guidelines

8-May-00 208 CMI001

7.2 Interactions Fields (cont.)

Rule for source
and target ID's Note that the sources and targets cannot use the same identifiers.

That is, stem items cannot be identified as 1, 2, 3, 4, and alternative
items also identified as 1, 2, 3, and 4. This rule is related to student
response recording.

Assume for a moment that the stem items are labeled 1, 2, 3, and the
alternatives are also labeled 1, 2, and 3. Further assume, stem 1
must be paired to alternative 3. If during data analysis a 1.3 pair
occurs, is it correct or incorrect?

The computer records student inputs in the order in which they
occur. The student could have selected the alternative item 1 first
and matched it with the stem item 3. This would make the response
incorrect.

However, if the student had selected the stem item 1 first, and then
the alternative 3, the response would be correct.

Using the same identifiers for both sources and targets could make it
impossible to determine whether the student chose item 1 from the
stem items or the alternative items. Therefore, in this example, the
stem items should be labeled 1, 2, 3, and the alternative items 4, 5,
and 6, or the stem items labeled 1, 2, and 3, with the alternatives
labeled a, b, and c. In any case, all identifiers should be unique.

Why not force all targets to be numeric and all stems to be
alphabetic. Assume there is a group of items in a circle. The
student is to match related pairs in this large circle. It would be very
inconvenient to have to label the members of the circle (clockwise)
1, 2, a, 3, b, c, d, 4, e, 5. Far better to be able to label the circle
(clockwise) 1, 2, 3, 4, 5, 6, 7, 8, 9,10.

AICC 7.2 Interactions File CMI Guidelines

8-May-00 209 CMI001

7.2 Interactions Fields (cont.)

Student response Definition A description of the computer-measurable action of a
student in a situation where his action is of interest to an
analyst.

Field ID Student_Response

Data
format

The following Response data formats are described
under Correct response on page 203.

• True-false
• Multiple choice (choice)
• Fill in the blank (fill-in)
• Numeric
• Matching
• Simple performance (performance)
• Sequencing
• Likert

Matching
examples

"1.2"
"{1.c,2.b,3.a,4.d}"
"{3.4,1.6,5.2}"
"{a.e, d.g, c.f, b.h}"
"{12.2, 11.3, 10.11}"

Mixed
examples

"1.2"
"1.2,1.3"
"Washington"
"C"
"b,c,e"
"23291"
-- Notice that for some types of questions, large
-- numbers cannot have commas in them. 23,291 is
-- interpreted as two alternative responses.

AICC 7.2 Interactions File CMI Guidelines

8-May-00 210 CMI001

7.2 Interactions Fields (cont.)

Result Definition Judgment of the acceptability of the student response.

Field ID Result

Data
format

Only the first character is significant. Possible
arguments include correct or wrong. If all responses are
acceptable (correct) for a given ID, this keyword is
omitted.

• Correct, c, or C.
• Wrong, w, or W.
• Unanticipated response, u, or U.
• Neutral, n or N.
• a number (may be a decimal)

For multiple judgments on a complex response (such as a
matching response) commas separate the judgments.
Another judgment for a complex question, like a
matching question, could be a number like .75, indicating
3 out of 4 matches were made.

Usage rules When the correct response field is not blank, this
keyword becomes redundant, since the result can be
computed from comparing response to correct
response. However, both the correct response field and
the result field may be filled in. There is no rule against
redundancy in this file.

Result
Examples

"c"
"c,c,w,c,c"
"unanticipated response, correct, correct, wrong, c"
"neutral"
"Correct"

AICC 7.2 Interactions File CMI Guidelines

8-May-00 211 CMI001

7.2 Interactions Fields (cont.)

Weighting Definition Interactions vary in importance. The weighting is a
factor which is used to identify the relative importance of
one interaction compared to another. For instance, if the
first interaction has a weight of 15 and the second
interaction has a weight of 25, then any combined score
that reflects weighting would be more influenced by the
second interaction.

If all interactions are equal in importance, then each
interaction has the same weight. For instance each could
have a weight of 1, or each could have a weight of 37.
The final weighted score from the lesson where all
interactions are equal to 1 is the same score as that lesson
if all of its interactions are equal to 37.

A weight of 0 indicates that the interaction should not be
counted in the weighted final score.

This refers to weighting of the question, not the student
response.

Field ID Weighting

Data
format

A single floating point number. The decimal point is
optional and does not have to appear in every
Weighting.

Usage rules An interaction may have a weight, and similarly,
individual actions or responses inside a complex
interaction may have a weight. The WEIGHTING factor
applies to any element of the interaction with the same
four-digit extension.

Examples .66
1.25
5

AICC 7.2 Interactions File CMI Guidelines

8-May-00 212 CMI001

7.2 Interactions Fields (cont.)

Latency Definition The time from the presentation of the stimulus to the
completion of the measurable response.

Field ID Latency

Data
format

hh:mm:ss (Hours:Minutes:Seconds.)

Usage rules If latency is recorded, there can be a latency figure for
each response. For multiple responses in an interaction,
the latencies must be separated by a comma, and in the
same order as the responses.

Examples "00:00:23"
-- the student required 23 seconds to respond

"00:23:00"
-- The student required 23 minutes to respond

"00:00:03"
-- The student required 3 seconds to respond

"00:01:13

Correct response Student response Latency
{a.h, b.f, c.i, d.k, e.f} a.h, c.i, b.f, d.k, e.g 00:01:01

Partial record

"{a.h,b.f,c.i,d.k,e.f}","a.h,c.i,b.f, d.k,e.g","","","00:01:01"

AICC 7.3 Objectives Status CMI Guidelines

Rev 1.1
11-Apr-94 213 CMI001

7.3 Objectives Status

Definition An objective identifier and an indication of what the student has done
on previous attempts on the lesson. The student can pass, fail, or not
attempt an objective. These objectives are those associated with the
current launching lesson, not all the objectives in the course/curriculum.

File type Table (Comma-delimited ASCII)

File name xxxxxxxx.xxx
The file name is determined by the CMI system and provided to the
lesson in the CMI-to-CBT file group [Evaluation] with the keyword
Objectives_status_file=.

Fields The first record contains the field IDs. Each additional record in this
file describes a single objective.

Objectives Status: the fields
Course ID Student ID Lesson ID Date Time
Course_ID Student_ID Lesson_ID Date Time

Continued Objective ID Score Status Mastery Time
Objective_ID Score Status Mastery_Time

AICC 7.3 Objectives Status CMI Guidelines

18-Jun-98 214 CMI001

Example file
contents

The example below is extracted from a hypothetical file and represent a
single record.

"COURSE_ID","STUDENT_ID","LESSON_ID","DATE","TIME","OBJECTIVE_I
D","SCORE","STATUS","MASTERY_TIME"

"MD80-2","STU1009","APU1","1994/01/15","10:14:23","APU1684",3,,
"passed","00:02:37"

AICC 7.3 Objectives Status CMI Guidelines

18-Jun-98 215 CMI001

7.3 Objectives Status Fields

Course ID Description See Course ID field under Comment file on page 82

Field ID Course_ID

Student ID Description See Student_ID keyword on page 64

Field ID Student_ID

Lesson ID Description See Lesson ID field under Comment file on page 195

Field ID Lesson_ID

Date Description See Date field under Comments file on page 196

Field ID Date

Time Definition The chronological point at which the student begins work
on the objective.

Description See Time field under Comments file on page 76

Field ID Time

Objective ID Definition See Objective ID field description on page 201.

Field ID Objective_ID

Score Description See J_Score.1 on page 87.

Field ID Score

AICC 7.3 Objectives Status CMI Guidelines

18-Jun-98 216 CMI001

7.3 Objectives Status Fields (cont.)

Status Definition See J_Status.4 on page 89.

Field ID Status

Mastery time Definition The time required by the student to master (or fail) the
objective.

Description See Time= on page 76.

AICC 7.4 Path File CMI Guidelines

25-Oct-94 217 CMI001

7.4 Path File

Description This file allows an analysis of what path the student took through a
lesson. It enables the analyst to determine when the student asked for
help, when he selected alternative branches, if he selected optional
instruction, and the order in which he proceeded through the lesson.

Lesson elements In order to track a path through a lesson, the lesson must arbitrarily be
divided into some finite number of elements. There can be as many or
few as the designer feels are desirable. This group enables the analyst
to determine how many of the lesson elements were entered by the
student, the order in which the student experienced the elements, and the
time he spent in each element.

An element may be thought of as a unit of instruction. It may be
defined as the content between any two points to which a designer may
wish a student to be able to jump. An element begins at the point where
a student would be when jumping to that element, and ends at the point
where the student would be if jumping to the next element.

Because the number of elements in a lesson is at the discretion of the
designer, there can be thousands. For instance, if a lesson is designed to
teach a student how to play a song, each chord, or even each note could
be considered an element. The lesson could be designed to allow the
student to return to any point in the song to practice a section of the
piece.

To allow for a large number of elements in a lesson, a four digit
extension is used for each of the keywords associated with the element.

File type Table (Comma-delimited ASCII)

File name xxxxxxxx.xxx
The file name is determined by the CMI system and provided to the
lesson in the CMI-to-CBT file group [Evaluation] with the keyword
Path_File=.

AICC 7.4 Path File CMI Guidelines

Rev 3.0.2
8-May-00 218 CMI001

Fields The first record contains the field identifier names. Each subsequent
record in this file describes a single element in the student's path. The
order in which the records appear in the file, describes the path through
a lesson.

Path File: the fields
Course ID Student ID Lesson ID Date Time
Course_ID Student_ID Lesson_ID Date Time

Continued Element
Location

Status Why Left Time in
Element

Element_Locati
on

Status Why_Left Time_in_Elem
ent

Example The order in which the student progresses through the lesson is reflected
by a series of locations. The order of the location records reflects the
order in which the location was accessed. The Element Location data
or value indicates the ID of the element that was entered by the student.

For instance, assume there is a lesson with 6 elements. The element
locations are labeled A, B, C, D, E, and F. The student takes the path
described here, proceeding from point 1 to point 2, back to 3, and so
forth.

AICC 7.4 Path File CMI Guidelines

Rev 3.0.2
8-May-00 219 CMI001

Location = A Location = B Location = C

Location = D Location = E Location = F

1

2

3

5

4

6 7

Lesson with 6 elements

This progression through the lesson would result in a file with the
following records to describe the path.

"course_id","student_id","lesson_id","date","time","element_location","status","why_left","ti
me_in_element"

"course6","stu2310","first1","1998/06/05","14:10:31","A","P","S","00:00:24"

"course6","stu2310","first1","1998/06/05","14:10:55","E","P","S","00:01:06"

"course6","stu2310","first1","1998/06/05","14:12:01","A","I","L","00:02:24"

"course6","stu2310","first1","1998/06/05","14:13:25","B","P","S","00:00:54"

"course6","stu2310","first1","1998/06/05","14:14:19","D","P","L","00:02:40"

"course6","stu2310","first1","1998/06/05","14:16:59","E","P","S","00:03:03"

"course6","stu2310","first1","1998/06/05","14:20:02","F","P","E","00:02:12"

AICC 7.4 Path File CMI Guidelines

Rev 3.0.2
8-May-00 220 CMI001

7.4 Path Fields

Course ID Description See Course ID field under Comment file on page 82

Field ID Course_ID

Student ID Description See Student_ID keyword on page 64

Field ID Student_ID

Lesson ID Description See Lesson ID field under Comment file on page 195

Field ID Lesson_ID

Date Description See Date field under Comments file on page 196

Field ID Date

Time Definition The chronological point at which the student enters the
lesson element.

Field ID Time

Data
Format

See Time field on page 76.

AICC 7.4 Path File CMI Guidelines

Rev 3.0.2
8-May-00 221 CMI001

7.4 Path Fields (cont.)

Element location Definition Identification of where in a lesson the student is/was.
The element is identified by a location ID.

A single lesson element can have a large number of
interactions associated with it, or only a single interaction
associated with it. The number of interactions per
element is at the designer's discretion.

Field ID Element_Location

Data
format

Alpha-numeric string.

Usage rules An element may be entered multiple times, resulting in
multiple records with the same location.

Students may also jump out of a lesson to a location in
another lesson, then return to the base lesson. This is
reflected in the lesson ID field as well as the element
location field.

Examples "1"
"apu02"

AICC 7.4 Path File CMI Guidelines

Rev 3.0.2
8-May-00 222 CMI001

7.4 Path Fields (cont.)

Status Definition A record of the student's relationship to an element each
time he leaves that element. The element is identified by
the Location field.

Field ID Status

Data
format

Status is described with a single character or an integer
number. If a word or several letters appear as an
argument, only the first character is significant. The
following statuses are possible:

Status Symbol
Passed
Complete
Incomplete
Not attempted
Failed
Score

P
C
I
N
F

integer number

(Notice that "not attempted" is subtly different than
"not entered." If a student does not enter an element,
there is no record.)

Examples "P"
"pass"

AICC 7.4 Path File CMI Guidelines

Rev 3.0.2
8-May-00 223 CMI001

7.4 Path Fields (cont.)

Why Left Definition This allows a record to be kept indicating why a student
departed an element in the lesson. There are four
possibilities that may be recorded:

Move from
one element
to another

Student selected: The student pressed NEXT or selected
some option which resulted in his leaving the
element.

Lesson directed: The logic of the lesson moved a student
out of this element to some other element in the
course.

Leave
lesson
entirely

Exit by student: A complete departure from this lesson.
For instance the student may have selected
LOGOUT, or BREAK or a time out may have
occurred.

Directed departure: The lesson has forced the student out
of it. An example might occur when the assignable
unit time limit is exceeded.

Field ID Why_Left

Data
format

Alpha-numeric string or character.

Usage rules Only the first character is significant. Case is not
significant.

S or s = student selected
L or l = lesson directed
E or e = exit
D or d = directed departure

Examples "Why_Left"
"S"
"student selected"
"s"

AICC 7.4 Path File CMI Guidelines

Rev 3.0.2
8-May-00 224 CMI001

7.4 Path Fields (cont.)

Time in Element Definition How long the student spent in the element of the lesson
identified in the record.

Field ID Time_in_Element

Description For data format and examples see Time= keyword on
page 76.

25-Oct-94 225 CMI001

8.0 GROUP AND KEY WORD SUMMARY

Description These tables list all of the groups, key words, and fields in this
document. In many cases the same data can be found in several files.
An effort has been made to be sure that when the same data appears in
more than one file, it uses the same keyword.

AICC 8.0 Group and Keyword Summary CMI Guidelines

Rev 1.4
5-Jan-96 226 CMI001

8.1 CMI/Lesson Communication Files

Description Two files are required for CMI/Lesson Communications. One for the
CMI-to-CBT Lesson communication. The other is for the CBT Lesson-
to-CMI communication.

CMI-to-CBT Pg CBT-to-CMI Pg

[Core] 63 [Core] 114
Student_ID
Student_Name
Output_File
Lesson_Location
Credit
Lesson_Mode
Lesson_Status
Path
Score
Time

Lesson_Location
Lesson_Status
Score
Time

[Core_Lesson]
data is undefined and may be
unique to each lesson

77 [Core_Lesson]
data is undefined and may be
unique to each lesson

114

[Core_Vendor] 117
data is undefined and may be
unique to each vendor

[Comments]
no key words
<delimited>

79 [Comments]
no key words
<delimited>

118

AICC 8.0 Group and Keyword Summary CMI Guidelines

Rev 1.4
5-Jan-96 227 CMI001

CMI-to-CBT (cont.) Pg CBT-to-CMI (cont.) Pg
[Evaluation]

Course_ID
Comments_File
Interactions_File
Objectives_Status_File
Path_File
Performance_File

81

[Objectives_Status]
J_ID.1
J_Score.1
J_Status.1

85 [Objectives_Status]
J_ID.1
J_Score.1
J_Status.1

120

[Student_Data] 91 [Student_Data] 122
Attempt_Number
Lesson_Status.1
Mastery_Score
Max_Time_Allowed
Score.1
Time_Limit_Action

Tries_During_Lesson
Try_Score.1
Try_Status.1
Try_Time.1

AICC 8.0 Group and Keyword Summary CMI Guidelines

Rev 1.8
3-Mar-97 228 CMI001

CMI-to-CBT (cont.) Pg CBT-to-CMI (cont.) Pg
[Student_Demographics]

City
Class
Company
Country
Experience
Familiar_Name
Instructor_Name
Job_Title
Native_Language
State
Street_Address
Telephone
Years_Experience

98

[Student_Preferences] 103 [Student_Preferences] 126
Audio
Language
Lesson_Type
Speed
Text
Text_Color
Text_Location
Text_Size
Video
Window.1

Audio
Language
Lesson_Type
Speed
Text
Text_Color
Text_Location
Text_Size
Video
Window.1

Rev 3.0
1-Sep-99 229 CMI001

8.2 Course Structure Files

Description There are a variable number of files required for describing a course
structure. The number of files depends on the level of complexity of the
course description.

The comma-delimited data files all contain the required field keyword
names in the first record.

In the Course Structure Table, the Objectives Relationships Table, the
Prerequisites File, and the Completion Requirements File there is no
meaningful data in the first record. However, becuase consistency may
make the parser easier to construct, the first record contains keywords
like the other files.

Course File Pg
[Course] 143

Course_Creator
Course_ID
Course_System
Course_Title
Level
Max_Fields_CST
Max_Fields_ORT
Total_AUs
Total_Blocks
Total_Complex_Obj
Total_Objectives
Version

[Course_Behavior]
Max_Normal

152

[Course_Description] 154

AICC 8.0 Group and Keyword Summary CMI Guidelines

Rev 3.0
1-Sep-99 230 CMI001

Assignable Unit File: the fields
System ID Type Command Line File Name

System_ID Type Command_Line File_Name

Continued Max Score Mastery Score Max Time Allowed
Max_Score Mastery_Score Max_Time_Allowed

Continued Time Limit Action System Vendor Core Vendor
Time_Limit_Action System_Vendor Core_Vendor

Descriptor File: the fields
System ID

(for course element)
Developer ID

(for course element)
Title Description

System_ID Developer_ID Title Description

Course Structure Table
Block Members -- Assignable units & other blocks
Block Member Member Member Member
Root System ID System ID System ID

System ID System ID System ID System ID System ID
System ID System ID System ID

Objectives Relationships Table
Course Element Members -- Assignable units, blocks, and objectives
Structure_Element Member Member Member Member

System ID System ID System ID System ID System ID
System ID System ID System ID
System ID System ID System ID System ID
System ID System ID System ID System ID System ID
System ID System ID System ID

AICC 8.0 Group and Keyword Summary CMI Guidelines

Rev 3.0
1-Sep-99 231 CMI001

Prerequisites File
Level 2 Structure Element

(Block or AU)
Prerequisite

(Block or AU)
Structure_Element Prerequisite

System ID System ID
System ID System ID
System ID System ID

Completion Requirements File
Level 2 Structure Element

(Block Objective
or AU)

Completion Logic Statement
(Blk, AU or Obj)

Status
Result if

True

Next

Structure_Element Requirement Result Next
System ID System ID Pass
System ID System ID Pass Sys ID
System ID System ID Comp

Prerequisites File
Level 3a Structure Element

(Block or AU)
Prerequisite Logic Statement

(Blk, AU)
Structure_Element Prerequisite

System ID System ID & System ID
System ID System ID | System ID
System ID System ID
System ID System ID & (System ID | System ID)

Completion Requirements File
Level 3a
& 3b

Course Element
(Block Objective

or AU)

Completion Logic Statement
(Blk, AU or Obj)

Status
Result
if True

Next

Structure_Element Requirement Result Next

System ID System ID=P & System ID=P Pass

System ID 2*{System ID, System ID, System ID} Pass Sys ID

System ID System ID Comp Sys ID

System ID System ID & (System ID | System ID) Pass

AICC 8.0 Group and Keyword Summary CMI Guidelines

Rev 3.0
1-Sep-99 232 CMI001

Prerequisites File
Level 3a & 3b Structure Element

(Block or AU)
Prerequisite Logic Statement

(Blk, AU or Obj)
Structure_Element Prerequisite

System ID System ID & System ID
System ID System ID | System ID
System ID System ID
System ID System ID & (System ID | System ID)

Rev 3.0.1
24-Nov-99 233 CMI001

8.3 Lesson Evaluation Files

Description All of these files are optional. Up to five of them may be required to
store all of the information desired from a CBT lesson.

Comments File: the fields
Course ID Student ID Lesson ID Date Time
Course_ID Student_ID Lesson_ID Date Time

Continued Location Comment
Location Comment

Interactions File: the fields
Course ID Student ID Lesson ID Date Time
Course_ID Student_ID Lesson_ID Date Time

Interaction ID Objective ID Type Interaction Correct Response
Interaction_ID Objective_ID Type_Interaction Correct_Response

Continued Student
Response

Result Weighting Latency

Student_Response Result Weighting Latency

AICC 8.0 Group and Keyword Summary CMI Guidelines

Rev 1.3
28-Mar-95 234 CMI001

Objectives Status: the fields
Course ID Student ID Lesson ID Date Time
Course_ID Student_ID Lesson_ID Date Time

Continued Objective ID Score Status Mastery Time
Objective_ID Score Status Mastery_Time

Path File: the fields
Course ID Student ID Lesson ID Date Time
Course_ID Student_ID Lesson_ID Date Time

Continued Element
Location

Status Why Left Time in
Element

Element_Locati
on

Status Why_Left Time_in_Elem
ent

Rev 2.0
1-Feb-98 235 CMI001

Appendix A: HTTP-based CMI Protocol

A.1 Introduction

Purpose This appendix defines how Hyper-Text Transfer Protocol (HTTP) is to
be used as an optional additional means of launch, control, and data
transport for AICC/CMI systems and AICC/CBT Assignable Units.
(This will allow AICC/CMI systems to deliver CBT using the World-
Wide Web.)

Scope This appendix describes:

• The rationale for adding an HTTP-based method AICC/CMI
communication

• The HTTP message format for AICC CMI/CBT (Assignable Unit)
communication

• The CBT Assignable Unit launch and control mechanisms for
HTTP-based AICC CMI systems and CBT Assignable Units

• The differences between the file-based method and HTTP-based
methods of CMI/CBT Assignable Unit communication.

• The differences between the file-based method and HTTP-based
methods of CMI launch and control of CBT Assignable Units.

• Required and optional features for HTTP-based AICC/CMI Protocol
(HACP)

Rationale HTTP protocol was specifically selected as a transport mechanism for
AICC data for the following reasons:

• HTTP Web Browsers and Web Servers are widely used for training
delivery.

• HTTP is a hardware platform independent protocol.
• Most internet security firewalls allow HTTP request/response

messages passage (as opposed to other internet protocols like
TCP/IP Sockets or IIOP)

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 2.0
1-Feb-98 236 CMI001

HTTP
Compatibility

HTTP clients and Servers used to deliver AICC/CMI systems and CBT
must comply with HTTP/1.0.

Please refer to RFC 1945 – Hypertext Transfer Protocol – HTTP/1.0. for
more information.

A.2 Overview

A.2.1 File-Based (Local) Launch and Control

The file-based (aka LAN-based) method for launching a CBT
Assignable Unit (AU) is a simple “synchronous” launch. The CMI is a
“Router” program that uses the operating system to launch another
program (i.e. creating a new process). The CMI launches the
Assignable Unit and “waits” until that Assignable Unit completes
execution. When that happens, the CMI resumes execution processing
the output from the Assignable Unit and displaying the next assignment
to the student user.

This process assumes two things:
1. Both the CMI and the CBT (AU) programs are in files

somewhere on the local file system (either a volume provided by
a LAN fileserver or a local disk drive.)

2. Both the CMI and the CBT (AU) programs are local
processes running on the student’s workstation

A.2.2 HTTP-Based Launch and Control

HTTP is client/server protocol. There is a client program (usually a
Web Browser) making requests and a server program (a Web Server)
responding to the requests. With HTTP protocol, client and server
programs maybe running on the same computer or on different
computers at different locations.

Some portions of the CMI run as part of the Web Server and other
portions (The student User interface) run as part of the Web Browser.

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 2.0
1-Feb-98 237 CMI001

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 2.0
1-Feb-98 238 CMI001

A.2.3 Assignable Unit Launching Sequence

In general, a Web-based CBT launch sequence is as follows:

1. Student Selects a CBT Assignable Unit (AU) to launch from the
CMI’s user’s interface (Menu)

2. The CMI pushes a URI (Uniform Resource Identifier) Location
(Complete with startup parameters) to the HTTP client

3. The HTTP Client Requests the CBT Assignable Unit from the
HTTP server.

4. The HTTP server program copies program and data to the HTTP
Client program

5. The CBT Assignable Unit grabs the URI parameters from the HTTP
client upon startup and initiates a “session” with the CMI system.

HTTP Server
HTTP Client

#1 user requests and
AU from the CMI

#3 HTTP Client
Requests the AU

#4 Download the
AU To the HTTP
Client

#5 The CBT AU
executes and grabs
URI parameters

#2 CMI sends URI
to HTTP Client

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 2.0
1-Feb-98 239 CMI001

A.2.4 CBT/CMI Communication Session

The CBT and the CMI have a client/server relationship where the CMI
is the Server and the CBT Assignable Unit is the client. Each request
that the CBT makes of the CMI is made by calling the CGI URL
(Uniform Resource Locator) using the POST method. (See Section A.5)
The CGI URL is specified in the URI launch parameters

A typical communication session between a CMI and CBT Assignable
Unit is as follows:

1. The CBT Assignable Unit spawns a separate HTTP session
2. The CBT Assignable Unit sends a message requesting startup

information from the CMI System. (This is the information found in
PARAM.CMI when files are used for communication.)

3. Just before the end of the Assignable Unit session, the CBT AU
sends student performance and lesson status data to the CMI system.

4. When the student exits the CBT Assignable Unit, the AU sends an
“end session” message to the CMI.

Response

Request
CMI data

HTTP Server

CMI’s CGI
“Catcher”
program

CMI

HTTP
Client

CBT AU (HTTP Session)

CGI/HTTP
Session – (Not
Visible to user)

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 2.0
1-Feb-98 240 CMI001

A.3 Differences between HTTP-Based and File-based Methods

There are differences in all three major parts of the CMI Guidelines.
These are discussed in the following three sections:
• Communication Differences
• Course Structure Interchange Differences
• Lesson Evaluation Differences

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 2.0
1-Feb-98 241 CMI001

A.3.1 Communication Differences

Communication
differences

The primary differences in HTTP-based vs. file-based AICC CBT/CMI
communication are as follows:

1. CBT Assignable Unit is launched via HTTP (Described
in Section A.2.3.)

2. The input parameter (PARAM.CMI) file, output
parameter file, and all files specified in the Lesson Evaluation
(Chapter 7) are replaced with corresponding messages (to
transfer the data that would have been written to files).

3. The PATH Keyword in [CORE] is not used in the input
parameters. (PATH is found in the PARAM.CMI file)

4. The CBT Assignable Unit sends an “Assignable Unit Complete”
message to the CMI upon exiting.

The commands required to initiate these communications are as follows

Command Function

GetParam Reads param.cmi data (See 5.1)�
PutParam Writes ouput data (See 5.2)
PutComments Writes Comments data (See 7.1)
PutPath Writes Path data (See 7.4)
PutInteractions Writes Interactions data (See 7.2)
PutObjectives Writes Objectives data (See 7.3)
PutPerformance Writes Performance data (See 5.1.5)
ExitAU Notifies the CMI that CBT Assignable

Unit has exited

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 2.0
1-Feb-98 242 CMI001

A.3.2 Course Structure Interchange Differences

Course structure
interchange
differences

The only difference in the course structure interchange is related to the
fact that the CMI system needs more information in order to launch an
Assignable Unit over the Web. This information is placed in the
Assignable Unit File (Described in Section 6.2).

Fields The File_Name field definition requires amplification, and two
additional fields are necessary in this file. The first new field describes
the launch parameters – in a URL-encoded format. The title of the field
is Web_Launch.

The second new field is optional. It provides an Assignable Unit
password. The field name is AU_Password

Assignable Unit File: the fields
System ID Type Command Line File Name

System_ID Type Command_Line File_Name

Continued Max Score Mastery Score Max Time Allowed
Max_Score Mastery_Score Max_Time_Allowed

Continued Time Limit Action System Vendor Core Vendor
Time_Limit_Action System_Vendor Core_Vendor

Continued Web Launch
Parameters

Assignable Unit
Password

Web_Launch AU_Password

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 2.1
18-Jun-98 243 CMI001

Requirements Although all field identifiers must be in the file for level 1 compliance,
only the following field values are required:

System_ID
Command_Line or Web_Launch
File_Name

Core_Vendor

File Name Definition The full identifier of the file containing the most critical
content of the assignable unit. (An assignable unit may
require several files -- a graphics library file, a digitized
audio file, etc.) The name, as listed by the operating
system when disk contents are requested.

The purpose of this field is to enable the CMI to locate
the primary file needed to launch an AU.

The AU filename location is installation specific. It is
the course vendor's responsibility to either have an
automated installation process or written manual
procedure for modifying the filename values in the AU
file to reflect the actual installed location of the AU's in a
course.

In cases where the AU's use file-based communication, it
will be necessary to include a file path so that the CMI
can locate the primary AU file on the local file system
(on a LAN or local disk drive) for launching purposes.

In other cases where the AU may reside on a remote web
server, a URL is necessary for the CMI system to
reference the AU.

Data
format

Alphanumeric characters. May be case sensitive,
depending on the operating system.

Examples "APU.EXE"
“C:\LESSONS\APU.WIS"
“http://somedomain.org/cbt/apu.html”

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 2.2
12-Oct-98 244 CMI001

Web Launch
Parameters

Definition Lesson specific launch parameters. The string of
characters that needs to be appended to the file name and
CMI-generated (required) parameters, in order to
successfully launch an Assignable Unit in the World
Wide Web environment.

The launch parameters for a web-based AU.

This data is in the "query" portion of the URL command
line after the “?” separator. (See section A4).

There are two parameters required by the AICC. The
"Web Launch Parameters" are any additional parameters
required by individual assignable units.

Data
format

Alphanumeric. The values may be case sensitive. The
field identifier is web_launch.

Usage rules 1. Values of the parameters are communicated in the
form <parameter Name> = <Parameter value>”.

2. These “Name Value Pairs” are separated by an
ampersand (“&”).

3. Name Value Pairs can be in any order.
4. Parameter names are not case sensitive.
5. Parameter values may be case sensitive.
6. All parameters must be URL-encoded

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 2.1
18-Jun-98 245 CMI001

Assignable Unit
Password

Definition A string of characters sent to the CMI system that
enables the CMI system to authenticate an assignable
unit.

The AU_password is an optional feature that allows for
additional security. The password value is specific to the
AU and is sent with HACP request messages, so that the
CMI system can authenticate the AU making the request.

The entry in the AU file is the value that the CMI checks
for. The CMI compares the value of this entry with the
value passed by the AU.

The value for the AU_password should be configurable
for individual CBT AU's by the system administrator
rather than being a static value embedded or "hard-
coded" in the AU.

Data
format

Alphanumeric. The values may be case sensitive.
Limited to 255 characters. The field identifier is
AU_Password.

Examples rtjh4578gh
trust!1

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 2.1
18-Jun-98 246 CMI001

A.3.3 Lesson Evaluation Data Differences

Lesson evaluation
differences

Lesson evaluation data files are optional. Their purpose is to enable the
use of standard performance analysis tools with many different courses.

In a file-based CMI system, the CBT lesson (Assignable Unit) is
responsible for saving student data directly into standard files. The files
are described in Chapter 7 and have the following names:

Comments
Interactions
Objectives Status
Path

Section 7.1
Section 7.2
Section 7.3
Section 7.4

Web-based system In a Web-based system, it may not be possible for the Assignable Unit
to write any files to a disk. Therefore, the CMI system becomes
responsible for creating the standard files for analysis,. The data is
passed to the CMI system, which then must write out the evaluation data
in AICC standard files as described in Chapter 7.

CBT

CMI

Intern

CBT

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 3.5
2-Apr-01 247 CMI001

A.4 CBT Assignable Unit URL Command Line

URL command
line

When the CMI launches a CBT Assignable Unit, it sends a URL
command line” to the HTTP Client (e.g. Web Browser). This command
line shall be URL encoded. It contains three basic values.

• URL of the CBT assignable unit
• AICC-required parameters
• Web Launch parameters

Required AICC Parameters

AICC
Parameter
Name

Format Value

AICC_SID Alpha-numeric

Example:
AICC_SID=1234WE9

Session ID. This is a string that
uniquely identifies this Assignable
Unit session among all other active
CMI/CBT Assignable Unit sessions.

The CMI system generates and passes
this value on Assignable Unit launch.

The CBT Assignable Unit will use
this value to identify its session when
making requests to the CMI system

AICC_URL URL Location

Example:
AICC_URL=http%3A%2F%
2Fcompany.com%2Fcgi-
bin%2Fcmi.cgi

The full URL (including the protocol)
to which the Assignable Unit will
send requests for the CMI.

This will likely be a cgi or servlet
program on a server. This program
acts as a CGI “catcher” for the CMI
system.

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 3.5
2-Apr-01 248 CMI001

Example AICC_sid=123&AICC_URL=http%3A%2F%2Fcmi.net
%2FCGI-Bin%2FCMI.cgi&vendorparam=this

(Example without the URL encoding:
AICC_sid=123&AICC_URL=http://cmi.net/CGI-
Bin/CMI.cgi&vendorparam=this)

Command line
format

The Launch line has the form of:

<URL of CBT Assignable Unit>?<AICC-required Parameter
1>&<AICC-required Paramter 2>& <Web Launch Parameters >

Where

<URL of CBT Assignable Unit> is the HTTP location of the
primary assignable unit file needed for web launch.

<AICC-required Parameter 1> represents either the AICC_SID or
the AICC_URL parameter as needed by the specific assignable unit
being launched. Parameter requirements and rules are described in
Section A.3.2.

<AICC-required Parameter 2> represents either the AICC_SID or
the AICC_URL whichever is not parameter 1.

<Web Launch Parameters> are those lesson-specific parameters
found in the WEB_LAUNCH field of the course interchange
Assignable Unit File.

The command line is a concatenation including two fields in the
Assignable Unit file -- File_Name and Web_Launch -- and the CMI-
generated required parameters. The file name is separated from the
parameters with a question mark (?). Each of the parameter fields is
separated by an ampersand (&). All values in the name-value pairs,
must be URL encoded.

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 3.5
2-Apr-01 249 CMI001

Data format Alphanumeric. The values may be case sensitive. All characters to the
right of the Question Mark (?) are limited to 255.

Examples http://www.cbtx.com/CBT/Assignable Unit1.html?aicc_sid=3898i&
aicc_url=www.aicc.org%2Fcgi-bin%2Fcmi&vendorparam=plato

(http://www.cbtx.com/CBT/Assignable Unit1.html?aicc_sid=3898i&
aicc_url=www.aicc.org/cgi-bin/cmi&vendorparam=plato)

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 3.5
2-Apr-01 250 CMI001

A.5 HTTP Communication

HTTP message
format

This section describes the format of the HTTP Messages used in HACP
(HTTP AICC CMI Protocol) .

The HACP messages are described in terms of HTTP/1.0 messages.
A detailed description of HTTP messages is beyond the scope of this
document. For a more definitive description of HTTP messages see
RFC1945, Hypertext Transfer Protocol -- HTTP/1.0

Communication between HTTP Clients (Web Browsers) and HTTP
servers (Web Servers) is accomplished by messages. There are two
kinds of HTTP messages,
• Request (sent from the client) and,
• Response (a reply sent from the server).

HTTP Request messages in HACP use "POST" method with a "content-
type" of "application/x-www-form-urlencoded". HTTP Response
messages in HACP have a "content-type" of "text/plain".

The HACP request/response message data are contained in the
"entity-body" of the request/response messages (respectively).

Name/Value pairs The message data format follows a convention called “name/value
pairs.” Name/value pairs are defined as follows:

<name>=<value>

Where the name represents a field title and the value represents the
contents of the field.

The following sections describe the format of the entity-body.

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 3.5
2-Apr-01 251 CMI001

A.5.1 Request HTTP Message Format

The content-type: application/x-www-form-urlencoded

Format The format of the entity-body is as follows:

command=<AICC Command >&
version=<AICC Spec Version>&
session_id=<Unique Session Identifier>&
AU_password=<Assignable Unit specific password(optional)>&
AICC_Data=<(URL encoded) AICC Data>
<end of buffer>

Where:
<AICC Command > = Any valid AICC HTTP command (See
Section A.6.2)
<Unique Session Identifier> = Unique Session Identifier (See
Section A.4)
<Assignable Unit specific password(optional)>= Assignable Unit
Specific Password (See Section A.3.2)
< AICC Spec Version > = AICC Spec Version (e.g. 1.9)
<AICC Data>=Data specific to the command

Usage rules Usage Rules:
• All of the above values are URL-encoded
• The Name/value pairs can appear in any order
• If an optional value is to be omitted, the name must also be omitted.
• The name of each parameter is not case sensitive.

Examples Command=GetParam&version=2.0&session_id=AX36&AICC_Data=

Command=PutParam&Version=2.0&Session_id=DAX36
&AICC_Data=[core]%0D%0A
lesson_location+%3D+end%0D%0Alesson_status%3D
pass%0D%0Ascore%3D87%0D%0Atime%3D00:23:15

Note that %0D is the hex value for carriage return, %0A the hex value
for line feed, %3D the hex value for =, and %26 the hex value for &

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 3.5
2-Apr-01 252 CMI001

A.5.2 HTTP Response Message Format

The content-type: text/plain
Request Method: POST

Format The format of the entity-body is as follows:

<Name> <Value>
error=
error_text=
version=
aicc_data=

<AICC error Number ><CR>
<AICC error description (optional) ><CR>
<AICC Spec Version (optional) ><CR>
< AICC Data>
<end of buffer>

Where:
<CR> = Carriage Return and Line feed

(ASCII 13 10)
< AICC error description > = AICC HTTP error message text (See

below)
< AICC error Number > = AICC HTTP error message Number

(See below)
<AICC Data>= PARAM.CMI data (if GetParam

command was issued in the request)

Error Number Error Text
AICC Error
messages 0

1
2
3

Successful
Invalid Command
Invalid AU-password
Invalid Session ID

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 3.5
2-Apr-01 253 CMI001

Usage rules Usage Rules:

• Leading and trailing white space (Tab, space) is allowed before and
after the <name>, “=”, and <value>.

• The <value> data in aicc_data begins as the first non-white space
character after the “=” and continues until the end of the entity-body
buffer.

• The <value> data for all other <name> variables begins as the first
non-white space character after the “=” and continues until the last
non-white character before the CR (or CRLF).

• The <value> data is plain text (and NOT URL-encoded)
• aicc_data is only included in response to a GetParam (see

A.6.2).request
• If aicc_data is returned it must be the last name/value pair in the

entity-body.
• The name, in the name/value pair is not case sensitive.
• If an optional value is to be omitted, the name must also be omitted.

Example Error=0
error_text = successful
version= 2.0
aicc_data=[core]
Student_ID=B1781
Student_Name=Doe, John
Output_file=
Credit=C
Lesson_Location=
Lesson_Mode=Sequential
Lesson_Status = Not Attempted
path =
Score=
Time = 00:00:00
[evaluation]
Course_ID=B17
[Student_data]
max_time_allowed=00:45:00
time_limit_action=Exit

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 3.5
2-Apr-01 254 CMI001

A.6 HTTP

This section references the HTTP standard, and describes the AICC
protocol for the HTTP commands necessary for the AICC CMI
implementation.

A.6.1 HTTP Standard

The HTTP 1.0 specification is described in RFC 1945. RFC 2068 was
created from draft 07 of the HTTP 1.1 specification and is not yet a
standard.

Other related RFC's:
• RFC 822 Standard for the Format of ARPA Internet Text Messages
• RFC 1738 Uniform Resource Locators (URL)
• RFC 1808 Relative Uniform Resource Locators
• RFC 1521 MIME (Multipurpose Internet Mail Extensions) Part

One: Mechanisms for Specifying and Describing the Format of
Internet Message Bodies

A.6.2 AICC CMI Protocol (HACP) Commands

Command Function Usage Rules
GetParam Get input data from the CMI.

(Data format Specified in
section 5.1)

Required.

This command can be issued to the CMI
multiple times.

If the command follows one or more
PutParam’s, the values received will
reflect any changes caused by the
PutParam’s.

AICC Appendix A: Web-Based CMI Protocol CMI Guidelines

Rev 3.5
2-Apr-01 255 CMI001

PutParam Sends output parameter file
data to the CMI

(Data format Specified in
section 5.2)

Required.

This command can be used multiple times.
Each time it is used the output parameter
data is replaced. The CMI must only use
the data from the final PutParam in a CBT
Assignable Unit session.
(i.e. this is an “overwrite” operation)

Multiple PutParam’s may be used to
ensure against data loss caused by a
dropped connection or abnormal session
termination.

 If a GetParam is performed after multiple
PutParam’s, the values in the GetParam
will reflect the last PutParam values.

PutComments Comments data (CMI001
7.1)
Record

Optional.

This command can be called multiple times.
The CMI system must collect and store the
new data content each time this command is
called in an Assignable Unit session.
(i.e. this an “append” operation)

PutPath Path data (CMI001 7.4) (Same rules as PutComments)

PutInteractions Interactions data (CMI001
7.2)

(Same rules as PutComments)

PutObjectives Objectives data (CMI001
7.3)

(Same rules as PutComments)

PutPerformance Performance data (CMI001
5.1.5)

Optional

Like PutParam, this command can be used
multiple times, replacing the data (i.e.
complete overwrite).

ExitAU Ends an Assignable Unit
session

Required.

This command can only be issued at the end
of a Assignable Unit session.

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.0
1-Sep-99 256 CMI001

Appendix B: API-based CMI Communication

B.1 Introduction

API This appendix describes an Application Programming Interface (API)
implementation for the AICC Computer Managed Instruction (CMI)
standards. It defines an API which may be used over the Web by
learning content to communicate with a Learning Management System
(LMS). In this document a CMI system may be thought of as a separate
management system or a subset of the functionality of an LMS.

This document also defines a mechanism for launching content that
enables an LMS to "bind" the LMS neutral API to an LMS specific data
transfer mechanism.

B.1.1 HTTP Implementation

Appendix A of this document, defines data exchange in terms of HACP
(HTTP AICC CMI Protocol), an HTTP-based protocol. HACP has
proven successful in commercial products and in large-scale LMS
applications. However, the average content developer finds HACP
difficult to understand and some LMS applications require protocols
other than HTTP.

LMS
CMI HTTP Lesson

Standardized:
Protocol
Format
Data

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.0
21-Sep-99 257 CMI001

B.1.2 API Implementation

Description This API standardizes the way content sends and receives information.
It assumes that content will communicate using the widely supported
ECMAScript calling conventions 9. ECMAScript was selected as the
method for implementing this API since nearly all browser platforms
natively support it. This standard defines several calls, the data in these
calls, and the format of that data.

The figure below illustrates what is standardized. Note that the
communication of the ECMAScript with the LMS is outside the scope
of this standard. Implementations of the communications of the
JavaScript object with the LMS may vary from product to product.”

Advantages There are several reasons for expanding the number of IEEE
implementations to include an API standard in addition to an HTTP-
based standard.

Generally speaking, an API is more abstract and implementation neutral
than an approach based on a specific protocol such as HTTP. A content
API essentially “hides” the implementation details of communication
with an LMS.

9 ECMAScript is the ISO standard version of JavaScript. In this document the use of the term
"JavaScript" is actually a reference to ECMAScript.

Java
Script

API Calls Lesson

Standardized

Format
Data

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.0
21-Sep-99 258 CMI001

Another advantage of an API is that it can make it easier for the content
developer to understand and use communication with the LMS.
Another advantage is the ability of a single API to work with several
different data models. And finally, an API enables learning content,
without being changed, to work with different data transfer mechanisms.

The approach defined in this document simplifies the creation of CMI
compliant content by allowing content developers to think in terms of a
higher-level API. This document also defines how to support the AICC
and IEEE CMI data models. Although designed to support the CMI
data model, the API defines a generic capability that can be applied to
related data models as these are standardized.

Content using the API can be reused without modification with different
data transfer mechanisms to suit application needs and with future
versions of HACP as these are defined. The LMS dynamically
determines which data transfer mechanism to use when content is
launched.

B.1.3 Two Web Implementations

The API standards defined here may be used to complement the HTTP
standards already defined in Appendix A. HTTP may be thought of as
one possible implementation for communication. In other words, an
LMS can support either an API or HTTP implementation or both
implementations simultaneously.

Java
Script

API Calls Lesson

Standardized

Format
Data

CMI HTTP

Standardized
Protocol
Format
Data

Maps

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.0
21-Sep-99 259 CMI001

B.2 Conformance Rules

Two viewpoints Conformance to this standard may be looked at from two viewpoints,
that of the learning content and that of the LMS.

B.2.1 Obligation

Levels There are three levels of obligation for the API's and the data elements
described in this standard:

• Mandatory
• Optional
• Extension

Obligations for the content and LMS are different.

For the LMS Mandatory means that the LMS shall perform the action that the API
calls for. If the action is to return a value to the content, then the call
must succeed in returning a value of the proper format and range.
Additionally, if the action is for the content to set a value, then that
value must assume the form requested by the content, and be returned if
requested in the future.

Optional means that a conforming LMS may not respond at all to the
parameters in a get value or set value call. A conforming LMS may
support many options.

An extension is an API or data element that is not described in this
standard. Extensions may be supported by an LMS. However,
extension API's may not perform the same function as a defined API;
and extension data elements may not contain the same semantic values
as defined data elements. If extensions are used to duplicate mandatory
and optional features, the LMS is non-conforming.

For content Mandatory means that the content shall execute the API. Only two
API's are mandatory for content: LMSInitialize and LMSFinish.

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.0
21-Sep-99 260 CMI001

Optional means that the content may execute the API with the specified
parameter and value at least once. Futhermore, the parameter and value
shall be in the proper format and range.

An extension is an API or data element that is not described in this
standard. Extensions may be supported by learning content. However,
extension API's may not perform the same function as a defined API;
and extension data elements may not contain the same semantic values
as defined data elements. If extensions are used to duplicate mandatory
and optional features, the learning content is non-conforming.

B.2.2 CMI Responsibilities

The mechanism described here assumes a clean separation between the
API function calls used in content and the API implementation (or API
object). The API function calls are embedded in content. The API
implementation is provided by the LMS when content is launched.

B.2.2.1 Launch

For browser and Web-based content, the LMS shall launch the content
from a browser window that contains the API implementation, or must
provide a parent frame that contains the API implementation. This
window shall contain a reference to the assignable unit which is a URL.

B.2.2.2 Communication

The API implementation provided by the LMS must support all the API
function calls described in this document as required.

The functions to "get" and "set" data element values are generic in
nature and do not specify particular data elements. Data elements can be
retrieved from the LMS using the LMSGetValue function and modified
using a LMSSetValue function. Regardless of implementation details, if
a data element is supported by the LMS, an LMSSetValue function call
shall affect the value returned by a subsequent LMSGetValue function
call on that same data element.

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.0
21-Sep-99 261 CMI001

All return values shall be strings which are convertible to the designated
data type.

The LMS shall support the ability of the content to "get" and "set" the
"communication" data elements defined as mandatory in this standard.
"Support" means that when the content executes an " LMSGetValue "
on an element, a legal value of the proper format and type and range
will be returned. When the content executes a legal " LMSSetValue "
on a supported element, that value will be taken and the appropriate
value returned when the next " LMSGetValue " on it is executed.

The LMS may support the ability of the content to "get" and "set" the
optional data elements.

The LMS may also support extensions not defined in this standard as
long as those extensions do not duplicate any mandatory or optional
features. Additionally, the support of any extensions must not cause the
failure of any content not using the extensions.

The table below summarizes the requirements for a conforming LMS.

LMS Conformance Requirements
- Supports the following transactions

• LMSInitialize
• LMSFinish
• LMSGetValue
• LMSSetValue
• LMSCommit
• LMSGetLastError
• LMSGetErrorString
• LMSGetDiagnostic

- May support security transactions
- Supports all mandatory elements

• LMSGetValue shall succeed
• LMSSetValue shall succeed

- May support any or all optional elements
• LMSGetValue may succeed
• LMSSetValue shall succeed

- May support extension elements if they do not duplicate
defined mandatory or optional elements
• LMSGetValue may succeed (or may fail)
• LMSSetValue may succeed (or may be ignored)

- Supported elements shall be proper type
- Supported elements shall be in proper range
- Keywords are all supported

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.0
21-Sep-99 262 CMI001

B.2.2.3 Sequencing

Flow control is assumed to be the responsibility of the LMS and not
within the assignable unit (AU) itself. This is conceptually important
because AU reuse cannot really happen if the AU has embedded
information that is context specific to the course. In this context, flow
control means that the decision of what AU (content) will next be
presented to the student is made by the LMS. (This recognizes that
some AU’s may make decisions—that is, branch – within itself, but that
kind of internal flow is hidden from the LMS.

The determination of what the student experiences is determined solely
by the LMS and is defined in large part by the Course Structure
description (Chapter 6). Chapter 6 defines information about content
that is context specific to the course (e.g., the default sequence of AU’s,
prerequisites that might alter the delivery path.)

Summary Points: A content assignable unit may only be launched by
an LMS. An assignable unit may not itself launch other assignable
units. An assignable unit must, at a minimum, contain an initialize()
and a finish() API call to conform with this guideline.

B.2.3 Content Responsibilities

The content is responsible for discovering the API object.

Content shall be able to call ECMAScript functions in a "foreign
window". The content does not have to be developed in ECMAScript
but shall be able to call it. This capability enables the clean separation
between the function calls used in content and the implementation of
those function calls provided by a learning management system.

For conforming Assignable Units, content shall call the LMSInitialize
function before calling any other API functions. If it calls the Initialize
function successfully, it shall also call the LMSFinish function before it
terminates, even if it does not call any other API functions.

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.0
21-Sep-99 263 CMI001

Content may support the required set of "communication" data elements
defined in the AICC/IEEE Web CMI specification.

The table below summarizes the requirements for conforming content.

Conformance Requirements for Content
Must support the following transactions:

- Initialize
- Zero or more transactions of:

- LMSGetValue(X)
- LMSSetValue(X,Y)
- Other

- Finish

- X is an optional or extension data element
- Y must be in range
- Y must be the right type

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.0
21-Sep-99 264 CMI001

B.2.3.1 Binding Mechanism

Learning content shall communicate with an LMS system through a
JavaScript API. This API will be part of an ECMAScript (JavaScript)
object attached to either a parent window or the “opener” window for
the HTML page. The content will obtain the API object by checking for
its existence on any parent window or the opener window. The
following JavaScript example demonstrates how this might work:

// returns the LMS API object (may be null if not found)
FindAPI(win)
{
 if (win.document.API != null)

return win.document.API;
 else if (win.parent == null || win.parent == win)

return null;
 else

return FindAPI(win.parent);
}

// obtain the LMS API
API = FindAPI(window);
if (API == null && window.opener != null)

API = FindAPI(window.opener);
if (API == null)

alert("Error: Could not find API");

B.2.3.2 Parameter Identification

The parameters in the API function calls have two or more parts. Each
part is separated by a period (dot). The first part is always the name of
the data model. The second part is always the name of an element in the
data model. Subsequent parts are either the name of an element in the
data model, or a number, which refers to a location within the preceding
data element which, is an array.

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.0
21-Sep-99 265 CMI001

• datamodel.element
• datamodel.element.element
• datamodel.element.number.element
• datamodel.element.number.element.number

Data model indicates which data model the value or return value is
based on. In this document the data model is "CMI" as defined in the
AICC and IEEE CMI standards.

The highest level of element is sometimes referred to as a Group in the
CMI data model. In this document the word "category" is used
interchangeably with the word "group." Each group element has a
unique name in the CMI data model.

Element refers to a specific name in the CMI data model. In the AICC
documentation, each element that is a sub-element or member of
another element is referred to as a keyword or a field. Some sub-
elements may have the same name. To enable precise identification, the
element (sub-element) name must always be accompanied by the name
of the group in which it appears.

Number is a simple integer that refers to the location in an array, if the
named value is in an array. The first element in an array is 0.

B.3 API Set

The API's The set of API function calls consists of the following:
LMSInitialize(“”)
LMSFinish(“”)
LMSGetValue(cmi.group.element)
LMSSetValue(cmi.group.element, value)
LMSCommit(“”)
LMSGetLastError(“”)
LMSGetErrorString(errornumber)
LMSGetDiagnostic(parameter)
Security Request/Respond --- TBD

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.0
21-Sep-99 266 CMI001

B.3.1 API General Rules

The following list summarizes the usage rules for the API.
• The function names are all case sensitive, and must always be

expressed exactly as shown above.
• The function parameters or arguments are case sensitive. All

parameters are lower case.
• The first symbol in the data element name identifies the data

model. For example, "cmi" indicates the AICC/IEEE CMI data
model. This expands the functionality of these API's by
allowing the same API to be used with other data models.

• There are three reserved keywords. These are all lower case and
proceeded by an underscore.
 _version
 _children
 _count

• When LMSGetValue is executed, it returns the last set value if
there was one.

B.3.2 Arrays -- Handling Lists

There are several data elements that appear in a list or an array. An
example of this would be objective status. There may be more than one
objective covered in a lesson, and a student may be allowed to
experience an objective more than once.

To get or set values in a list, the index number may be used. The only
time an index number may be omitted is when there is only one member
in a potential list. Index numbering starts at 0. If a value is to be
appended to the list, the Assignable Unit must know the last index
number used.

All new array elements shall be added sequentially. The assignable unit
shall not skip array numbers or leave empty array elements when
constructing a list of array values.

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.0
21-Sep-99 267 CMI001

If the student is entering the lesson for the second time, the _count
keyword can be used to determine the current number of records in the
list. For instance, to determine the number of objective records
currently recorded, the following API would be used:

LMSGetValue("cmi.objective._count")

If the lesson does not know the count of the objective records, it can
begin the current student count with 0. This would overwrite any
information about objectives currently stored in the first index position.
Overwriting or appending is a decision that is made by the lesson author
when he creates the lesson.

Elements in a list are referred to with a dot-number notation
(represented by .n). For instance the value of the status element in the
first objective in a lesson would be referred to as
"cmi.objective.0.status". The status element in the fourth objective
would be referred to as "cmi.objective.3.status". If a student
experienced the first objective twice, there could be two status's
associated with the first objective. These would be identified as
"cmi.objective.0.status.0" and "cmi.objective.0.status.1".

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 268 CMI001

API Function Table
Function Description API Call Return Value

Initialize The content must call this function before calling any other
API function. It indicates to the LMS system that the
content is going to communicate. The LMS can take any
initialization steps required in this function.

LMSInitialize(“”) A string convertible to
CMIBoolean

Finish The content must call this function before it terminates, if it
successfully called LMSInitialize at any point. It signals to
the LMS that the content has finished communicating. The
content may not call any API function except
LMSGetLastError after it calls LMSFinish

LMSFinish(“”) CMIBoolean

Get a value This is used to determine values for various categories and
elements in the CMI data model. Only one value is
returned for each call. The category and/or element is
named in the argument.

LMSGetValue(cmi.category)
LMSGetValue(cmi.category.element)

A string convertible to
appropriate data type

Set a value This is how data categories and elements get values. The
argument indicates which category or element is being set.
Only one value may be set with a single function call.

LMSSetValue(cmi.category, value)
LMSSetValue(cmi.category.element, value)

CMIBoolean

Send cache to
LMS

If the ECMAScript is caching LMSSetValue values, this call
requires that any values not yet sent to the LMS be sent.

LMSCommit(parameter) CMIBoolean

Determine error
code

The content must have a way of assessing whether or not
any given API call was successful, and if it was not
successful, what went wrong. This routine returns an error
code from the previous API call. Each time an API function
is called (with the exception of this one), the error code is
reset in the API. The content may call this any number of
times to retrieve the error code, and the code will not
change until the next API call.

LMSGetLastError() A string convertible to
CMIInteger

Obtain text related
to error

This function enables the content to obtain a textual
description of the error represented by the error code
number.

LMSGetErrorString(errornumber) CMIString255

Determine vendor-
specific
diagnostics

This function enables vendor-specific error descriptions to
be developed and accessed by the content. These would
normally provide additional helpful detail regarding the
error.

LMSGetDiagnostic(parameter) CMIString255

Security functions -TBD-

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 269 CMI001

B.3.3 Initialize

Description This function indicates to the API that the learning content is going to
communicate with the LMS. It allows the LMS to handle LMS specific
initialization issues. It is called by content before it can call any other
API function.

Syntax LMSInitialize(parameter)

Parameter “”. An empty string must be passed for conformance to this standard.
This parameter is reserved for future extensions.

Return value Boolean.
A "true" result indicates that the initialization was successful and a
"false" result indicates that it was not.

Examples LMSInitialize()
The learning content tells the API that the content wants to establish
communication with the LMS. A typical return value is "true".

B.3.4 Finish

Description The content must call this function before it terminates, if it successfully
called LMSInitialize at any point. LMSFinish() signals to the LMS that
the content has finished communicating. The content may not call any
API function except LMSGetLastError after it calls LMSFinish. In
other words, all LMSSetValue commands must be made before the
LMSFinish call.

Syntax LMSfinish(parameter)

Parameter “”. An empty string must be passed for conformance to this standard.
This parameter is reserved for future extensions.

Return value CMIBoolean.
A "true" result indicates that the function was successful and a "false"
result indicates that it was not.

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 270 CMI001

B.3.5 Get a Value

Description This function allows content (the assignable unit) to obtain information
from the LMS. It is used to determine

• Values for various categories (groups) and elements in the CMI
data model.

• The version of the data model supported.
• Whether a specific category or element is supported.
• The number of items currently in an array or list of elements.

The complete data element name and/or keywords are provided as a
parameter. The current value of that parameter is returned. Only one
value -- always a string -- is returned for each call.

Syntax LMSGetValue(parameter)

Parameters cmi.element.element
Returns the value of the named sub-element

cmi._version
The _version keyword is used to determine the version of the data
model supported by the LMS.

cmi.element._count
The _count keyword is used to determine the number of elements
currently in an array. This number is not changed by use of the
LMSCommit call. The count is the total number of elements in the
array, not the last index number used.

cmi.element._children
The _children keyword is used to determine all of the elements in a
group or category that are supported by the LMS.

Return value All return values are strings which can be converted to the appropriate
type.

For LMSGetValue(cmi.group.element) the return value is a string
representing the current value of the requested element or group.

For LMSGetValue(cmi._version) the return value is a string
representing the version of the data model supported by the LMS.

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 271 CMI001

For LMSGetValue(cmi.group._children) the return value is a comma
separated list of all the element names in the specified group or category
that are supported by the LMS. If an element has no children, but is
supported, an empty string is returned. An empty string is also returned
if an element is not supported. A subsequent request for last error
[LMSGetLastError()] can determine if the element is not supported.
The error “401 Not implemented error” indicates the element is not
supported.

For LMSGetValue(cmi.group._count) the return value is an integer that
indicates the number of items currently in an element list or array.

Examples LMSGetValue("cmi.core.student_name")
A typical return value might be "Jackson Hyde".

LMSGetValue("cmi.core.lesson_status")
A typical return value might be "incomplete".

LMSGetValue(cmi._version)
The current draft standard for the IEEE document defining the
CMI data model is entitled Draft Standard for Computer
Managed Instruction, and has an ID of P1484.11.2 and a version
number of 2.2. This call returns the version number of that IEEE
document which is 2.2.

LMSGetValue("cmi.student_preferences._children")
This is a request for category support. One typical return value
would be, "audio,speed,text". If there is no return, preferences are
probably not supported. An additional API call to determine the
last error could verify this.

LMSGetValue("cmi.comments._children")
The comments element has no children. A zero length string
indicates that comments are supported. No return implies no
support for comments.

LMSGetValue("cmi.evaluation.comments._children")
This is a data element request. The empty string means that any
list of student-generated comments will be forwarded to the LMS.
Further, this means the LMS will, when requested, produce a file
matching the description in the "Comments File" chapter of this
document.

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 272 CMI001

B.3.6 Set a Value

Description This function allows the learning content (the assignable unit) to send
information to the API. The API may be designed to immediately
forward the information to the LMS, or it may be designed to forward
information based on some other approach. For instance, the API could
accumulate the information and forward everything to the LMS when
the LMSFinish call is executed by the learning content.

This function is used to set the current values for various categories
(groups) and elements in the CMI data model.

The data element name and its group are provided as a parameter. The
current value of that parameter is included in the call. Only one value is
sent with each call.

Syntax LMSSetValue(parameter, value)

Parameter This is the name of a fully qualified atomic element defined in the CMI
Data Model. The argument is case sensitive. The argument is a string
surrounded by quotes.

The following represents some forms this parameter may take.

cmi.element
This is the name of a category or group defined in the CMI Data Model.
An example is "cmi.comments".

cmi.element.element
This is the name of an element defined in the CMI Data Model. An
example is "cmi.core.student_name".

cmi.element.n.element
The value of the sub-element in the nth-1 member of the element array
(zero-based indexing is used).

Value This is a string which must be convertible to the data type defined in
this standard for the element identified in the first parameter.

Return value CMIBoolean.
A "true" result indicates that the function was successful and a "false"
result indicates that it was not.

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 273 CMI001

B.3.7 Send Cache to CMI

Description If the ECMAScript is caching LMSSetValue values, this call requires
that any values not yet sent to the LMS be sent.

In some implementations, the ECMAScript may send the set values to
the LMS as soon as they are received, and not cache them locally. In
such implementations, this API is redundant and would result in no
additional action from the ECMAScript.

Syntax LMSCommit(parameter)

Parameter “”. An empty string must be passed for conformance to this standard.
This parameter is reserved for future extensions.

Return value CMIBoolean.
A "true" result indicates that the function was successful and a "false"
result indicates that it was not.

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 274 CMI001

B.3.8 Determine Error Code

Description The learning content must have a way of assessing whether or not any
given API call was successful, and if it was not successful, what went
wrong. This routine returns an error code from the previous API call.
Each time an API function is called (with the exception of this one,
LMSGetErrorString, and LMSGetDiagnostic -- the error functions), the
error code is reset in the API. The content may call the error functions
any number of times to retrieve the error code, and the code will not
change until the next API call.

Syntax LMSGetLastError()

Parameter “”. An empty string must be passed for conformance to this standard.
This parameter is reserved for future extensions.

Return value The return values are integer numbers that identify errors falling into the
following categories:

100 General errors
200 Syntax errors
300 LMS erors
400 Data model errors

The following codes are available for error messages:
0. No error
101. General exception
102. Server is busy.
201. Invalid argument error
202. Element cannot have children
203. Element not an array – cannot have count
204. Element cannot have a value
301. Not initialized
401. Not implemented error
402. Invalid SetValue, element is a CMI keyword
403. Element is read only
404. Element is write only
405. Incorrect data type

Additional codes TBD

B.3.9 Obtain Text Related to Error

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 275 CMI001

Description This function enables the content to obtain a textual description of the
error represented by the error code number.

Syntax LMSGetErrorString(errornumber)

Parameter An integer number representing an error code.

Return value A string that represents the verbal description of an error.

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 276 CMI001

B.3.10 Determine Vendor-specific Diagnostics

Description This function enables vendor-specific error descriptions to be developed
and accessed by the content. These would normally provide additional
helpful detail regarding the error.

Syntax LMSGetDiagnostic(parameter)

Parameter The parameter may take one of two forms.
• An integer number representing an error code. This requests

additional information on the listed error code.
• “”. An empty string. This requests additional information on the

last error that occurred.

Return value The return value is a string that represents any vendor-desired additional
information relating to either the requested error or the last error.

B.3.11 Security Request/Respond -- TBD

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.4
23-Oct-00 277 CMI001

B.4 LMS to Assignable Unit Communications

Content
The following table represents a subset of the Data Model
defined in this document, which also contains more
complete definitions for each term. The missing data
elements are those required for a file-based CMI, but not
required for an API-based CMI.

Headings
The Mult column indicates whether the data element may
be an array (Arr) or is always a single value (SV). This
obligation column represents the obligations of the LMS,
not the assignable unit or learning content. All data
elements are optional for the assignable unit.

Comments
Comments appears 4 times in the following tables. An
explanation of how these are to be interpreted is based on
their usage in the file-based and HTTP communication
implementations.

In the LMS to Assignable Unit Communication table,
LMSGetValue(“cmi.comments”) is defined as a single
string of 4096 bytes or less. This string represents

annotations or instructor comments that the assignable unit
is designed to make available to the student.

In the same table LMSGetValue(“cmi.evaluation.com-
ments”) is used to determine if a the data collection of
comments described in the Lesson Evaluation Data table is
possible. The Lesson Evaluation Data table defines an
array of comments that can be transmitted. Furthermore,
supporting any element in that table requires that the LMS
be able to create a separate file containing that element as
defined in Chapter 7 Lesson Evaluation Files.

In the Assignable Unit to LMS Communication table,
LMSSetValue(“cmi.comments”) enables the AU to send
student comments on content to the LMS. In this case it is
assumed that multiple comments may be captured, but all
of the comments shall be concatenated into one string and
that string shall not exceed 4096 bytes. The string may
contain embedded location information.

In the Lesson Evaluation Data table, the LMSSetValue
(“cmi.evaluation.comments.n.content”) allows the AU to
send an unlimited number of comments with a maximum
length of 4096 bytes each. Additionally, time and location
for each comment may be sent as a separate value.

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 278 CMI001

Table of LMS to Assignable Unit Communications
name Contextualized Definition Mult LMS

Obl
Typical API Calls Return Value

core Information required to be furnished by all
CMI systems. What all assignable units
may depend upon at start up.

SV Man LMSGetValue(“cmi.core._children”) CMIString255

|--student_id Unique alpha-numeric code/identifier that
refers to a single user of the CMI system.

SV Man LMSGetValue(“cmi.core.student_id”) CMIIdentifier

|--student_name Normally, the official name used for the
student on the course roster. A complete
name, not just a first name.

SV Man LMSGetValue(“cmi.core.student_name”) CMIString255

|--lesson_location This corresponds to the assignable unit
exit point passed to the CMI system the
last time the student experienced the AU.

SV Man LMSGetValue(“cmi.core.lesson_location”) CMIString255

|--credit Indicates whether the student is being
credited by the CMI system for his
performance (pass/fail and score) in this
assignable unit.

SV Man LMSGetValue(“cmi.core.credit”) CMIVocabulary

|--lesson_status This is the current student status as
determined by the CMI system, and sent to
the assignable unit when it is launched.

SV Man LMSGetValue(“cmi.core.lesson_status”) CMIVocabulary

|--entry Indication of whether the student has been
in the assignable unit before.

SV Man LMSGetValue(“cmi.core.entry”) CMIVocabulary

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 279 CMI001

Table of LMS to Assignable unit (cont.)
name Contextualized Definition Mult LMS

Obl
Typical API Calls Return Value

|--score Indication of the performance of the
student during his last session in the
assignable unit.

SV Man LMSGetValue(“cmi.core.score._children”) CMIString255

|--|--raw Numerical representation of student
performance in assignable unit. May be
unprocessed raw score.

SV Man LMSGetValue(“cmi.core.score.raw”) CMIDecimal
CMIBlank

|--|--max The maximum score or total number that
the student could have achieved.

SV Opt LMSGetValue(“cmi.core.score.max”) CMIDecimal
CMIBlank

|--|--min The minimum score that the student could
have achieved.

SV Opt LMSGetValue(“cmi.core.score.min”) CMIDecimal
CMIBlank

|--total_time Accumulated time of all the student
sessions in the assignable unit. Normally
this is the sum of the session_time values.
If no session time is provided by the AU,
then the total_time may be the
accumulated values of LMS-determined
session times.

SV Man LMSGetValue(“cmi.core.total_time”) CMITimespan

|--lesson_mode Identification of student-related information
that may be used to change the behavior
of the assignable unit.

SV Opt LSMGetValue(“cmi.core.lesson_mode”) CMIVocabulary

suspend_data Unique information generated by the
assignable unit during previous uses, that
is needed for the current use.

SV Man LMSGetValue(“cmi.suspend_data”) CMIString4096

launch_data Unique information generated at the
assignable unit’s creation that is needed
for every use.

SV Man LMSGetValue(“cmi.launch_data”) CMIString4096

comments_from_l
ms

Instructor comments directed at the
student that the assignable unit may
present to the student when appropriate.

SV Opt LMSGetValue(“cmi.comments”) CMIString4096

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 280 CMI001

Table of LMS to Assignable unit (cont.)
name Contextualized Definition Mult LMS

Obl
Typical API Calls Return Value

evaluation Assignable units may be able to generate
detailed student-performance/AU-
evaluation information. This category
identifies if this functionality is supported
by the LMS.

SV Opt LMSGetValue(“cmi.evaluation._children”) CMIString255

|--course_id Alpha numeric sequence that provides a
unique label for a course.

SV Opt LMSGetValue(“cmi.evaluation.course_id “) CMIIdentifier

|--comments Identifies if the student’s comments on an
AU can be collected and made available
by the LMS in a separate file.

SV Opt LMSGetValue(“cmi.evaluation.comments.) CMIBoolean

|--interactions Identifies what detailed information of a
student’s interactions in an AU can be
collected.

SV Opt LMSGetValue(“cmi.evaluation.interactions._c
hildren”)

CMIString255

|--objectives_
status

Identifies what detailed information on
assignable unit objectives can be
collected.

SV Opt LMSGetValue(“cmi.evaluation.objectives_sta
tus._children”)

CMIString255

|--paths Identifies what detailed information can be
collected on the path through the
assignable unit taken by the student.

SV Opt LMSGetValue(“cmi.evaluation.paths._childre
n”)

CMIString255

objectives Identifies how the student has performed
on individual objectives covered in the AU.

Arr Opt LMSGetValue(“cmi.objectives._count”)
LMSGetValue(“cmi.objectives._children”)

CMIInteger
CMIString255

|--id A developer defined, AU-specific identifier
for an objective.

SV Opt LMSGetValue(“cmi.objectives.n.id”) CMIIdentifier

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 281 CMI001

Table of LMS to Assignable unit (cont.)
name Contextualized Definition Mult LMS

Obl
Typical API Calls Return Value

|--score The score obtained by the student after the
last attempt to master the objective.

SV Opt CMIString255
CMIInteger

|--|--raw Numerical representation of student
performance after each attempt on the
objective. May be unprocessed raw score.

SV Opt LMSGetValue(“cmi.objectives.n.score.raw”) CMIDecimal
CMIBlank

|--|--max The maximum score or total number that
the student could have achieved.

SV Opt LMSGetValue(“cmi.objectives.n.score.max”) CMIDecimal,
CMIBlank

|--|--min The minimum score that the student could
have achieved.

SV Opt LMSGetValue(“cmi.objectives.n.score.min”) CMIDecimal
CMIBlank

|--status The status obtained by the student after
the last attempt to master the objective.

SV Opt LMSGetValue(“cmi.objectives.n.status”) CMIVocabulary

student_data Information to support customization of an
AU based on a student’s performance.

SV Opt LMSGetValue(“cmi.student_data._children”) CMIString255

|--attempt_number Number of times the student has been in,
or previously used the assignable unit.

SV Opt LMSGetValue(“cmi.student_data.attempt_nu
mber”)

CMIInteger

|--mastery_score The passing score, as determined outside
the assignable unit.

SV Opt LMSGetValue(“cmi.student_data.mastery_sc
ore”)

CMIDecimal

|--max_time_
allowed

The amount of time the student is allowed
to have in the current attempt on the
assignable unit.

SV Opt LMSGetValue(“cmi.student_data.max_time_
allowed”)

CMITimespan

|--time_limit_action What the assignable unit is to do when the
max time allowed is exceeded.

SV Opt LMSGetValue(“cmi.student_data.time_limit_
action”)

CMIVocabulary

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 282 CMI001

Table of LMS to Assignable unit (cont.)
name Contextualized Definition Mult LMS

Obl
Typical API Calls Return Value

|--attempt_records Student’s performance after previous times
in the assignable unit.

Arr Opt LMSGetValue(“cmi.student_data.attempt_rec
ords._children”)
LMSGetValue(“cmi.student_data.attempt_rec
ords._count”)

CMIString255
CMIInteger

|--|--lesson_score The final score obtained by the student
after each use of the AU.

SV Opt LMSGetValue(“cmi.student_data.attempt_rec
ords.n.lesson_score._children”)

CMIString255

|--|--|--raw Numerical representation of student
performance after each use of the AU

SV Opt LMSGetValue(“cmi.student_data.attempt_rec
ords.n.lesson_score.raw”)

CMIDecimal
CMIBlank

|--|--|--max The maximum score or total number that
the student could have achieved.

SV Opt LMSGetValue(“cmi.student_data.attempt_rec
ords.n.lesson_score.max”)

CMIDecimal,
CMIBlank

|--|--|--min The minimum score that the student could
have achieved.

SV Opt LMSGetValue(“cmi.student_data.attempt_rec
ords.n.lesson_score.min”)

CMIDecimal
CMIBlank

|--|--lesson_status Indication of the status of the assignable
unit after each session.

Arr Opt LMSGetValue(“cmi.student_data.attempt_rec
ords.n.lesson_status”)

CMIVocabulary

student_
demographics

Student attributes possessed before
entering the course.

SV Opt LMSGetValue(“cmi.student_demographics._
children”)

CMIString255

|--city Portion of student’s current address. SV Opt LMSGetValue(“cmi.student_demographics.ci
ty”)

CMIString255

|--class A predefined training group to which a
student belongs.

SV Opt LMSGetValue(“cmi.student_demographics.cl
ass”)

CMIString255

|--company Student’s place of employment. SV Opt LMSGetValue(“cmi.student_demographics.c
ompany”)

CMIString255

|--country Portion of student’s current address. SV Opt LMSGetValue(“cmi.student_demographics.c
ountry”)

CMIString255

|--experience Information on the student’s past that
might be required by an AU to determine
what to present, or what presentation
strategies to use.

SV Opt LMSGetValue(“cmi.student_demographics.e
xperience”)

CMIString255

|--familiar_name An informal title that may be used to
address the student.

SV Opt LMSGetValue(“cmi.student_demographics.fa
miliar_name”)

CMIString255

|--instructor_name Name of the person responsible for the
student’s understanding of the material in
the assignable unit.

SV Opt LMSGetValue(“cmi.student_demographics.in
structor_name”)

CMIString255

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 283 CMI001

Table of LMS to Assignable unit (cont.)
name Contextualized Definition Mult LMS

Obl
Typical API Calls Return Value

|--title Title of the position or the degree currently
held by the student.

SV Opt LMSGetValue(“cmi.student_demographics.tit
le”)

CMIString255

|--native_language The language used in the student’s country
of origin.

SV Opt LMSGetValue(“cmi.student_demographics.n
ative_language”)

CMIString255

|--state Segment of a country, also called province,
district, canton, etc.

SV Opt LMSGetValue(“cmi.student_demographics.st
ate”)

CMIString255

|--street_address Portion of student’s current address. SV Opt LMSGetValue(“cmi.student_demographics.st
reet_address”)

CMIString255

|--telephone Telephone number of a student. SV Opt LMSGetValue(“cmi.student_demographics.te
lephone”)

CMIString255

|--years_
experience

Number of years the student has
performed in current or similar position.

SV Opt LMSGetValue(“cmi.student_demographics.y
ears_experience”)

CMIString255

student_
preference

Student selected options that are
appropriate for subsequent AUs.

SV Opt LMSGetValue(“cmi.student_preference._chil
dren”)

CMIString255

|--audio Sound on/off and volume control. SV Opt LMSGetValue(“cmi.student_preference.audio
”)

CMISInteger

|--language Identifies in what language the information
should be delivered.

SV Opt LMSGetValue(“cmi.student_preference.langu
age”)

CMIString255

|--lesson_type Indicates suitability of preferences to
current assignable unit.

SV Opt LMSGetValue(“cmi.student_preference.lesso
n_type”)

CMIString255

|--speed Pace of content delivery. SV Opt LMSGetValue(“cmi.student_preference.spee
d”)

CMISInteger

|--text Written content visibility control. SV Opt LMSGetValue(“cmi.student_preference.text”) CMISInteger
|--text_color Written content foreground and

background hue.
SV Opt LMSGetValue(“cmi.student_preference.text_

color”)
CMIString255

|--text_location Position of text window on the screen. SV Opt LMSGetValue(“cmi.student_preference.text_l
ocation”)

CMIString255

|--text_size Magnitude of the written content
characters on screen.

SV Opt LMSGetValue(“cmi.student_preference.text_
size”)

CMIString255

|--video Motion picture tint and brightness on the
screen.

SV Opt LMSGetValue(“cmi.student_preference.video
”)

CMIString255

|--windows Size and location of video, help, glossary,
etc. windows.

SV Opt LMSGetValue(“cmi.student_preference.wind
ows.n“)

CMIString255

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 284 CMI001

B.5 Assignable unit to LMS Communication

Table of Assignable unit to LMS Communication
name Contextualized Definition Mult LMS

Obl
API Call Value Data

Type
core Information required by the CMI system to

function.
SV Man -

|--lesson_location This identifies the point where the student
leaves the assignable unit.

SV Man LMSSetValue(“cmi.core.lesson_location”,
value)

CMIString255

|--lesson_status This is the student status when he leaves
the assignable unit.

SV Man LMSSetValue(“cmi.core.lesson_status”,
value)

CMIVocabulary

|--exit An indication of how or why the student left
the assignable unit.

SV Man LMSSetValue(“cmi.core.exit”, value) CMIVocabulary

|--score Indication of the performance of the
student during his time in the AU.

SV Man

|--|--raw Numerical representation of student
performance in the AU. May be
unprocessed raw score.

SV Man LMSSetValue(“cmi.core.score.raw”, value) CMIDecimal

|--|--max The maximum score or total number that
the student could have achieved.

SV Opt LMSGetValue(“cmi.core.score.max”) CMIDecimal,
CMIBlank

|--|--min The minimum score that the student could
have achieved.

SV Opt LMSGetValue(“cmi.core.score.min”) CMIDecimal,
CMIBlank

|--session_time Time spent in the assignable unit during
the session that is ending.

SV Man LMSSetValue(“cmi.core.session_time”,
value)

CMITimespan

suspend_data Unique information generated by the
assignable unit, that is needed for future
uses. Passed to the CMI system to hold
and to return the next time the student
starts this AU.

SV Man LMSSetValue(“cmi.suspend_data”, value) CMIString4096

comments Student’s written remarks recorded during
the current use of the assignable unit.

SV Opt LMSSetValue(“cmi.comments“, value) CMIString4096

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 285 CMI001

Table of Assignable unit to LMS Communication (cont.)
name Contextualized Definition Mult LMS

Obl
API Call Value Data

Type
objectives Identifies how the student has performed

on individual objectives covered in the
assignable unit.

Arr Opt -

|--id A developer defined, AU-specific identifier
for an objective.

SV Opt LMSSetValue(“cmi.objectives.n.id”, value) CMIIdentifier

|--score The score obtained by the student after the
last attempt to master the objective.

SV Opt

|--|--raw Numerical representation of student
performance after each attempt on the
objective. May be unprocessed raw score.

SV Opt LMSSetValue(“cmi.objectives.n.score.raw”.
value)

CMIDecimal

|--|--max The maximum score or total number that
the student could have achieved.

SV Opt LMSSetValue(“cmi.objectives.n.score.max”,
value)

CMIDecimal

|--|--min The minimum score that the student could
have achieved.

SV Opt LMSSetValue(“cmi.objectives.n.score.min”,
value)

CMIDecimal

|--status The status obtained by the student after
the last attempt to master the objective.

SV Opt LMSSetValue(“cmi.objectives.n.status“,
value)

CMIVocabulary

student_data Information on student performance for
each attempt on a selected segment of the
AU without leaving the AU.

SV Opt -- -

|--tries_during_
lesson

Total number of efforts to complete the
assignable unit or selected segment.

SV Opt LMSSetValue(“cmi.student_data.tries_during
_lesson”, value)

CMIInteger

|--tries Data related to each try. Arr Opt
|--|--score The score at the completion of each

attempt.
SV Opt

|--|--|--raw Numerical representation of student
performance after each attempt on the
objective. May be unprocessed raw score.

SV Opt LMSSetValue(“cmi.student_data.tries.n.scor
e.raw”. value)

CMIDecimal

|--|--|--max The maximum score or total number that
the student could have achieved.

SV Opt LMSSetValue(“cmi.student_data.tries.n.scor
e.max”. value)

CMIDecimal

|--|--|--min The minimum score that the student could
have achieved.

SV Opt LMSSetValue(“cmi.student_data.tries.n.scor
e.min”. value)

CMIDecimal

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 286 CMI001

Table of Assignable unit to LMS Communication (cont.)
name Contextualized Definition Mult LMS

Obl
API Call Value Data

Type
|--|--status The status of the assignable unit or

segment after each attempt.
SV Opt LMSSetValue(“cmi.student_data.tries.n.statu

s “, value)
CMIVocabulary

|--|--time Length of time required for each attempt
on an AU or segment.

SV Opt LMSSetValue(“cmi.student_data.tries.n.time
“, value)

CMITimespan

student_
preference

Student selected options that are
appropriate for subsequent AUs.

SV Opt -- -

|--audio Sound on/off and volume control. SV Opt LMSSetValue(“cmi.student_preference.audio
”)

CMISInteger

|--language Identifies in what language the information
should be delivered.

SV Opt LMSSetValue(“cmi.student_preference.langu
age”, value)

CMIString255

|--lesson_type Indicates suitability of preferences to
current assignable unit.

SV Opt LMSSetValue(“cmi.student_preference.lesso
n_type”, value)

CMIString255

|--speed Pace of content delivery. SV Opt LMSSetValue(“cmi.student_preference.spee
d”, value)

CMISInteger

|--text Written content visibility control. SV Opt LMSSetValue(“cmi.student_preference.text”,
value)

CMISInteger

|--text_color Written content foreground and
background hue.

SV Opt LMSSetValue(“cmi.student_preference.text_
color”, value)

CMIString255

|--text_location Position of text window on the screen. SV Opt LMSSetValue(“cmi.student_preference.text_l
ocation”, value)

CMIString255

|--text_size Magnitude of the written content
characters on screen.

SV Opt LMSSetValue(“cmi.student_preference.text_
size”, value)

CMIString255

|--video Motion picture tint and brightness on the
screen.

SV Opt LMSSetValue(“cmi.student_preference.video
”, value)

CMIString255

|--windows Size and location of video, help, glossary,
etc. windows.

Arr Opt LMSSetValue(“cmi.student_preference.wind
ows.n“, value)

CMIString255

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 287 CMI001

B.6 Lesson Evaluation Data

The Lesson Evaluation Data table represents data that is
defined in Chapter 7 Lesson Evaluation Data, and is not
redundant with other API calls.

This information is all optional. However, if any of this data is
supported, it shall be made available by the CMI system in the
file formats specified in Chapter 7 Lesson Evaluation Data.

Although this data is used by the CMI system to create the files
described in Chapter 7, it is just more data to be communicated
by API calls. As such this table should be thought of as an
extension of table B.5, the Assignable Unit to LMS
communication table.

Lesson Evaluation Data Table
name Contextualized Definition Mult API Call Value Data

Type
lesson_id Alphanumeric label supplied by the developer. SV LMSSetValue(“cmi.evaluation.lesson_id”, value) CMIString255
date The calendar day on which the data is

created.
SV LMSSetValue(“cmi.evaluation.date”, value) CMIDate

comments Freeform feedback from the student. More
structured representation than the comments
in the Assignable unit to LMS table.

Arr -

|--time Indication of when the comment is made. SV LMSSetValue(“cmi.evaluation.comments.n.time “,
value)

CMITime

|--location Indication of where in the assignable unit the
comment is made.

SV LMSSetValue(“cmi.evaluation.comments.n.location “,
value)

CMIString255

|--content The recorded statement of a student. SV LMSSetValue(“cmi.evaluation.comments.n.content “,
value)

CMIString4096

interactions A recognized and recordable input or group of
inputs from the student to the computer

Arr -

|--id Unique alphanumeric label created by the
assignable unit developer.

SV LMSSetValue(“cmi.interactions.n.id “, value) CMIIdentifier

|--objectives Indication of any objectives associated with
the interaction.

Arr

|--|--id Developer created identifier for an objective. SV LMSSetValue(“cmi.interactions.n.objectives.n.id“,
value)

CMIIdentifier

AICC CMI Guidelines

Rev 3.5
2-Apr-01 288 CMI001

Lesson Evaluation Data Table
name Contextualized Definition Obl API Call Value Data

Type
|--time Indication of when the interaction is available

to the student.
SV LMSSetValue(“cmi.interactions.n.time “, value) CMITime

|--type Indication of which category of interaction is
recorded.

SV LMSSetValue(“cmi.interactions.n.type “, value) CMIVocabulary

|--correct_
responses

Expected student feedback in the interaction. Arr

|--|--pattern Definition of possible student response. SV LMSSetValue(“cmi.interactions.n.correct_responses
.n.pattern“, value)

CMIFeedback

|--weighting Factor that is used to identify the relative
importance of one interaction compared to
another.

SV LMSSetValue(“cmi.interactions.n.weighting “, value) CMIDecimal

|--student_
response

Description of the computer-measurable
action of a student in an interaction.

SV LMSSetValue(“cmi.interactions.n.student_response
“, value)

CMIFeedback

|--result Judgment of the of the student’s response. SV LMSSetValue(“cmi.interactions.n.result “, value) CMIVocabulary
|--latency The time from the presentation of the stimulus

to the completion of the measurable response.
SV LMSSetValue(“cmi.interactions.n.latency “, value) CMITimespan

objectives_
status

Information about a student’s performance on
AU objectives.

Arr Note: The only objectives data element that is not
described in table B.5 Assignable Unit to LMS
Communication, is mastery_time.

-

|--mastery_time Chronological period spent in the objective. SV LMSSetValue(“cmi.objectives_status.n.mastery_tim
e “, value)

CMITimespan

paths Description of the sequence of events the
student experienced in the assignable unit.

Arr -

|--location_id Identification of where the student is in the
assignable unit.

SV LMSSetValue(“cmi.paths.n.location_id”, value) CMIIdentifier

|--time Indication of when the student entered the
assignable unit segment.

SV LMSSetValue(“cmi.paths.n.time”, value) CMITime

|--status A record of the student’s performance in a
segment each time he leaves that element

SV LMSSetValue(“cmi.paths.n.status”, value) CMIVocabulary

|--why_left The reason a student departed an element in
the assignable unit.

SV LMSSetValue(“cmi.paths.n.why_left”, value) CMIVocabulary

|--time_in_
element

How long the student spent in the element. SV LMSSetValue(“cmi.paths.n.time_in_element”, value) CMITimespan

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.4
23-Oct-00 289 CMI001

B.7 Data Types

Description These definitions are for the data types used to describe the format of
each data element. All of the data types have the first three characters
of "CMI" to clearly indicate they are data types that may be unique to
the CMI data model.

CMIBlank An empty string.

CMIBoolean A vocabulary of two words. true or false

CMIDate A period in time of one day, defined by year, month, and day in the
following numerical format YYYY/MM/DD.

CMIFeedback Structured description of student response in an interaction. The
structure and contents of the feedback depends upon the type of
interaction. The currently defined interactions are:
True/False:
Feedback is one of the following single characters: 0,1,t, or f.
Choice:
Feedback is one or more single characters separated by a comma. Legal
characters are 0 to 9 and a to z. If all the characters must be chosen to
assume the feedback is correct, then the comma-separated list must be
surrounded by curly brackets: { }
Fill-in:
Any alpha-numeric string up to 255 characters. After the first letter
spaces are significant.
Numeric:
CMIDecimal
Likert:
Single character. Legal characters are 0 to 9 and a to z.
Matching:
One or more pairs of identifiers. Each identifier is a single letter or
number (0 to 9 and a to z). The identifiers in a pair are separated by a
period. Commas separate the pairs. If all pairs must be matched
correctly to consider the interaction correct, then the pairs are
surrounded by curly brackets: { }
Performance:
Very flexible format. Essentially an alphanumeric string of 255
characters or less.

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 290 CMI001

Sequencing:
A series of single characters separated by commas. Legal characters are
0 to 9 and a to z. The order of the characters determines the correctness
of the feedback.

CMIDecimal Number which may have a decimal point. If not preceded by a minus
sign, the number is presumed to be positive. Examples are "2" and
"2.2".

CMIIdentifier Alphanumeric group of characters with no white space or unprintable
characters in it. Maximum of 255 characters.

CMIInteger An integer number from 0 to 65536.

CMISIdentifier CMI System Identifier: Alphanumeric group of characters that begins
with a single letter: A, B, or J and ends with an integer number. One to
five numerals may follow the letter. See System Identifier.

CMISInteger A signed integer number from –32768 to +32768.

CMIString255 A set of ASCII characters with a maximum length of 255 characters.

CMIString4096 A set of ASCII characters with a maximum length of 4096 characters.

CMITime A chronological point in a 24 hour clock. Identified in hours, minutes
and seconds in the format: HH:MM:SS.SS Hours and seconds shall
contain two digits. Seconds shall contain 2 digits with an optional
decimal point and up to two additional digits.

CMITimespan A length of time in hours, minutes, and seconds shown in the following
numerical format: HHHH:MM:SS.S Hours and seconds shall contain
two or more digits. Hours has a maximum of 4 digits. Minutes shall
consist of 2 digits. Seconds shall contain 2 digits with an optional
decimal point and additional digits.

CMIVocabulary Used to attach specific vocabularies within contexts in a schema.
Vocabulary words must be complete and exact matches to those below.
Single letters and abbreviations may not be used in API communication.
The following are vocabularies included in the CMI Data Model:

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 291 CMI001

Vocabulary Type Members of Vocabulary
Mode normal review

browse

Status passed completed
failed incomplete
browsed not attempted

Exit time-out suspend
logout

Why-left student selected lesson directed
exit directed departure

Credit credit no-credit

Entry ab-initio resume

Time Limit Action exit, message exit, no message
continue, message continue, no message

Interaction true-false choice
fill-in matching
performance likert
sequencing unique
numeric

Result correct wrong
unanticipated neutral
x.x (CMIDecimal)

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 292 CMI001

B.8 Data Comparison

Description The following tables compare the Group and Keyword names used in
file-based communication, with the data element names used in API
communications. The tables indicate where there are differences and
• Why a new element was created
• Why a keyword was deleted
• Why a group or keyword name was changed.

Table of CMI to Assignable Unit Communication
Data Model Name Group/Keyword

Title
Why Different

core [Core]
|--student_id Student_ID
|--student_name Student_Name

Output_File Only needed for file-based
communication.

|--lesson_location Lesson_Location
|--credit Credit
|--lesson_status Lesson_Status
|--entry status flag Need separate variable for every value
|--score Score
|--|--raw Need separate variable for every value
|--|--max Need separate variable for every value
|--|--min Need separate variable for every value
|--total_time Time Avoid get and set time ambiguity.
|--lesson_mode Lesson_Mode
suspend_data [Core_Lesson] Name better describes the data.
launch_data [Core_Vendor] Name better describes the data.
comments [Comments]
evaluation [Evaluation]
|--course_id Course_ID
|--comments Comments_File API communication does not use files.
|--interactions Interactions_File API communication does not use files.
|--objectives_status Objectives_Status_

File
API communication does not use files.

|--paths Path_File API communication does not use files.
Performance_File API communication does not support

complex performance information.

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 293 CMI001

Table of CMI to Assignable Unit Communication (cont.)
Data Model Name Group/Keyword

Title
Why Different

objectives [Objectives_Status] Status is only one element in this group.
|--id J_ID.1 Objectives relationship established by

parent name. i.e. objectives.n.id
|--score J_Score.1 Relationship of score to objective

established by parent name and array
index.

|--|--raw Need separate variable for every value
|--|--max Need separate variable for every value
|--|--min Need separate variable for every value
|--status J_Status.1 Objectives relationship established by

parent name. i.e. objectives.n.status
student_data [Student_Data]
|--attempt_number Attempt_Number
|--mastery_score Mastery_Score
|--max_time_

allowed
Max_Time_

Allowed
|--time_limit_action Time_Limit_Action
|--attempt_records Must have a name with no value to

enable children.
|--|--lesson_score Score.1 Added lesson for consistency with status.
|--|--|--raw Need separate variable for every value
|--|--|--max Need separate variable for every value
|--|--|--min Need separate variable for every value
|--|--lesson_status Lesson_Status.1 Plural convention for possible array.
student_

demographics
[Student_

Demographics]
|--city City
|--class Class
|--company Company
|--country Country
|--experience Experience
|--familiar_name Familiar_Name
|--instructor_name Instructor_Name
|--title Job_Title Generalize person's title.
|--native_language Native_Language
|--state State
|--street_address Street_Address
|--telephone Telephone
|--years_

experience
Years_Experience

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 294 CMI001

Table of CMI to Assignable Unit Communication (cont.)
Data Model Name Group/Keyword

Title
Why Different

student_
preference

[Student_
Preferences]

Singular because not an array.

|--audio Audio
|--language Language
|--lesson_type Lesson_Type
|--speed Speed
|--text Text
|--text_color Text_Color
|--text_location Text_Location
|--text_size Text_Size
|--video Video
|--windows Window.1 Plural convention for arrays.

Table of Assignable Unit to CMI Communication
Data Model Name Group/Keyword

Title
Why Different

core [Core]
|--lesson_location Lesson_Location
|--lesson_status Lesson_Status
|--exit status flag Need separate variable for every value
|--score Score
|--|--raw Need separate variable for every value
|--|--max Need separate variable for every value
|--|--min Need separate variable for every value
|--session_time Time Avoid get and set time ambiguity.
suspend_data [Core_Lesson] Name better describes the data.
comments [Comments]
objectives [Objectives_Status] Status is only one element in this group.
|--id J_ID.1 Objectives relationship established by

parent name. i.e. objectives.n.id
|--score J_Score.1 Relationship of score to objective

established by parent name and array
index.

|--|--raw Need separate variable for every value
|--|--max Need separate variable for every value
|--|--min Need separate variable for every value
|--status J_Status.1 Objectives relationship established by

parent name. i.e. objectives.n.status

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 295 CMI001

Table of Assignable Unit to CMI Communication (cont.)
Data Model Name Group/Keyword

Title
Why Different

student_data [Student_Data]
|--tries_during_

lesson
Tries_During_

Lesson
|--tries Need name for parent.
|--|--score Try_Score.1 Relationship to tries established by parent

name.
|--|--|--raw Need separate variable for every value
|--|--|--max Need separate variable for every value
|--|--|--min Need separate variable for every value
|--|--status Try_Status.1 Relationship to tries established by parent

name.
|--|--time Try_Time.1 Relationship to tries established by parent

name.
student_

preference
[Student_

Preferences]
Singular for non-array.

|--audio Audio
|--language Language
|--lesson_type Lesson_Type
|--speed Speed
|--text Text
|--text_color Text_Color
|--text_location Text_Location
|--text_size Text_Size
|--video Video
|--windows Window.1

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 296 CMI001

Table of Lesson Evaluation Data
In a web environment all Lesson Evaluation information must pass through the CMI system
before it can be stored in standard files. Each of the fields in the set of Lesson Evaluation files
becomes just another data element that is being passed to the CMI. The CMI is responsible for
assembling this information plus any additional information that is required from the Lesson to
LMS table to create the files specified in this standard.

Data Model Name Field Title Why Different
Course_ID CMI already has this information. Do not

need to return it to the CMI.
Student_ID CMI already has this information. Do not

need to return it to the CMI.
lesson_id Lesson_ID
date Date
comments Comments File Identifies existence of detailed/extensive

comments, not a file.
|--time Time
|--location Location
|--content Comment Content of comment. Keeping the word

comment would be redundant.
interactions Interactions File

Course_ID Superflous (see above).
Student_ID Superflous (see above).
Lesson_ID Already in data model. (See above)

|--id Interaction_ID Full name superflous in data model.
(Appears as interactions.id)

|--objectives Plural for array names.
|--|--id Objective_ID

Date Already in data model. (See above)
|--time Time
|--type Type_Interaction
|--correct_responses Need ability to describe multiple

responses.
|--|--pattern Correct_Response More accurate term for describing

correct (and incorrect) responses.
|--weighting Weighting
|--student_ response Student_Response
|--result Result
|--latency Latency

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 297 CMI001

Table of Lesson Evaluation Data (cont.)
Data Model Name Field Title Why Different
objectives_status Objectives Status

File
Same as objectives in lesson to LMS
data.

Course_ID Superflous (see above).
Student_ID Superflous (see above).
Lesson_ID Already in data model. (See above)
Date Already in data model. (See above)
Time Passed with objectives information in

Lesson to LMS data.
Objective_ID In lesson to LMS data under objectives.
Score In lesson to LMS data under objectives.
Status In lesson to LMS data under objectives.

|--mastery_time Mastery_Time Must be added to objectives in lesson to
LMS data.

paths Path File
Course_ID Superflous (see above).
Student_ID Superflous (see above).
Lesson_ID Already in data model. (See above)
Date Already in data model. (See above)

|--location_id Element_Location Element location is an ID.
|--time Time
|--status Status
|--why_left Why_Left
|--time_in_ element Time_in_Element

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 298 CMI001

B.9 Combined Table

Description The following table merges the “B.6 Lesson Evaluation Data” table with
the “B.5 Assignable Unit to LMS Communication” table. It shows how
the LMSSetValue API can be used to report data in both tables.

The “Orig” column identifies the original table from which the data
element came. Additionally, the data elements that originated in the
“B.5 Assignable Unit to LMS Communication” table, are on a gray
backgound.

Combined Table
Name Orig Mult LMS

Obl
API Call Value Data

Type
core B.5 SV Man -
|--lesson_location B.5 SV Man LMSSetValue(“cmi.core.lesson_location”

, value)
CMIString255

|--lesson_status B.5 SV Man LMSSetValue(“cmi.core.lesson_status”,
value)

CMIVocabulary

|--exit B.5 SV Man LMSSetValue(“cmi.core.exit”, value) CMIVocabulary
|--score B.5 SV Man
|--|--raw B.5 SV Man LMSSetValue(“cmi.core.score.raw”,

value)
CMIDecimal

|--|--max B.5 SV Opt LMSGetValue(“cmi.core.score.max”) CMIDecimal,
CMIBlank

|--|--min B.5 SV Opt LMSGetValue(“cmi.core.score.min”) CMIDecimal,
CMIBlank

|--session_time B.5 SV Man LMSSetValue(“cmi.core.session_time”,
value)

CMITimespan

suspend_data B.5 SV Man LMSSetValue(“cmi.suspend_data”,
value)

CMIString4096

comments B.5 SV Opt LMSSetValue(“cmi.comments“, value) CMIString4096
evaluation B.6 SV Opt
|--lesson_id B.6. SV Opt LMSSetValue(“cmi.evaluation.lesson_id”

, value)
CMIString255

|--date B.6 SV Opt LMSSetValue(“cmi.evaluation.date”,
value)

CMIDate

|--comments B.6 Arr Opt -
|--|--time B.6 SV Opt LMSSetValue(“cmi.evaluation.comments

.n.time “, value)
CMITime

|--|--location B.6 SV Opt LMSSetValue(“cmi.evaluation.comments
.n.location “, value)

CMIString255

|--|--content B.6 SV Opt LMSSetValue(“cmi.evaluation.comments
.n.content “, value)

CMIString4096

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 299 CMI001

Combined Table (cont)
Name Orig Mult LMS

Obl
API Call Value Data

Type
interactions B.6 Arr Opt -
|--id B.6 SV Opt LMSSetValue(“cmi.interactions.n.id “,

value)
CMIIdentifier

|--objectives B.6 Arr Opt
|--|--id B.6 SV Opt LMSSetValue(“cmi.interactions.n.objectiv

es.n.id“, value)
CMIIdentifier

|--time B.6 SV Opt LMSSetValue(“cmi.interactions.n.time “,
value)

CMITime

|--type B.6 SV Opt LMSSetValue(“cmi.interactions.n.type “,
value)

CMIVocabulary

|--correct_
responses

B.6 Arr Opt

|--|--pattern B.6 SV Opt LMSSetValue(“cmi.interactions.n.correct
_responses.n.pattern“, value)

CMIFeedback

|--weighting B.6 SV Opt LMSSetValue(“cmi.interactions.n.weighti
ng “, value)

CMIDecimal

|--student_
response

B.6 SV Opt LMSSetValue(“cmi.interactions.n.student
_response “, value)

CMIFeedback

|--result B.6 SV Opt LMSSetValue(“cmi.interactions.n.result “,
value)

CMIVocabulary

|--latency B.6 SV Opt LMSSetValue(“cmi.interactions.n.latency
“, value)

CMITimespan

objectives B.5 Arr Opt -
|--id B.5 SV Opt LMSSetValue(“cmi.objectives.n.id”,

value)
CMIIdentifier

|--score B.5 SV Opt
|--|--raw B.5 SV Opt LMSSetValue(“cmi.objectives.n.score.ra

w”. value)
CMIDecimal

|--|--max B.5 SV Opt LMSSetValue(“cmi.objectives.n.score.m
ax”, value)

CMIDecimal

|--|--min B.5 SV Opt LMSSetValue(“cmi.objectives.n.score.mi
n”, value)

CMIDecimal

|--status B.5 SV Opt LMSSetValue(“cmi.objectives.n.status“,
value)

CMIVocabulary

objectives_ status B.6 Arr Opt Note: The only data element that is not
described in table B.5 Assignable Unit to
LMS Communication, is mastery_time.

|--mastery_time B.6 SV Opt LMSSetValue(“cmi.objectives_status.n.m
astery_time “, value)

CMITimespan

AICC Appendix B: API-based CMI Communication CMI Guidelines

Rev 3.5
2-Apr-01 300 CMI001

Combined Table (cont)
Name Orig Mult LMS

Obl
API Call Value Data

Type
student_data B.5 SV Opt -- -
|--tries_during_

lesson
B.5 SV Opt LMSSetValue(“cmi.student_data.tries_du

ring_lesson”, value)
CMIInteger

|--tries B.5 Arr Opt
|--|--score B.5 SV Opt
|--|--|--raw B.5 SV Opt LMSSetValue(“cmi.student_data.tries.n.s

core.raw”. value)
CMIDecimal

|--|--|--max B.5 SV Opt LMSSetValue(“cmi.student_data.tries.n.s
core.max”. value)

CMIDecimal

|--|--|--min B.5 SV Opt LMSSetValue(“cmi.student_data.tries.n.s
core.min”. value)

CMIDecimal

|--|--status B.5 SV Opt LMSSetValue(“cmi.student_data.tries.n.s
tatus “, value)

CMIVocabulary

|--|--time B.5 SV Opt LMSSetValue(“cmi.student_data.tries.n.ti
me “, value)

CMITimespan

paths B.6 Arr Opt -
|--location_id B.6 SV Opt LMSSetValue(“cmi.paths.n.location_id”,

value)
CMIIdentifier

|--time B.6 SV Opt LMSSetValue(“cmi.paths.n.time”, value) CMITime
|--status B.6 SV Opt LMSSetValue(“cmi.paths.n.status”,

value)
CMIVocabulary

|--why_left B.6 SV Opt LMSSetValue(“cmi.paths.n.why_left”,
value)

CMIVocabulary

|--time_in_
element

B.6 SV Opt LMSSetValue(“cmi.paths.n.time_in_elem
ent”, value)

CMITimespan

student_
preference

B.5 SV Opt -- -

|--audio B.5 SV Opt LMSSetValue(“cmi.student_preference.a
udio”)

CMISInteger

|--language B.5 SV Opt LMSSetValue(“cmi.student_preference.l
anguage”, value)

CMIString255

|--lesson_type B.5 SV Opt LMSSetValue(“cmi.student_preference.l
esson_type”, value)

CMIString255

|--speed B.5 SV Opt LMSSetValue(“cmi.student_preference.s
peed”, value)

CMISInteger

|--text B.5 SV Opt LMSSetValue(“cmi.student_preference.t
ext”, value)

CMISInteger

|--text_color B.5 SV Opt LMSSetValue(“cmi.student_preference.t
ext_color”, value)

CMIString255

|--text_location B.5 SV Opt LMSSetValue(“cmi.student_preference.t
ext_location”, value)

CMIString255

|--text_size B.5 SV Opt LMSSetValue(“cmi.student_preference.t
ext_size”, value)

CMIString255

|--video B.5 SV Opt LMSSetValue(“cmi.student_preference.vi
deo”, value)

CMIString255

|--windows B.5 Arr Opt LMSSetValue(“cmi.student_preference.w
indows.n“, value)

CMIString255

25-Oct-94 301 CMI001

Glossary

application
programming
interface

API. A set of standard software interrupts, calls, functions, and data
formats that can be used by a computer program to access network
services, devices, or operating systems.

API Abbreviation for “application programming interface.”

argument Keyword argument. The information relating to a keyword that appears
to the right of the equal sign. Also called keyword value or keyword
data.

assignable unit The smallest element of instruction or testing to which a student may be
routed by a CMI system. It is the smallest unit the CMI system assigns
and tracks.

A program or lesson launched by the CMI system.

attitude survey A series of questions used to determine how well a student likes the
courseware; or how well the student feels the courseware is working.
This aids in measuring customer satisfaction. See Likert test.

AU Abbreviation for "assignable unit."

block An arbitrarily defined grouping of course components. Blocks are
composed of related assignable units or other blocks.

This is a term used in the AICC document CMI Guidelines for
Interoperability. A block may correspond to any level of the AICC
instructional hierarchy above lesson, up to and including course.

bookmark Identification of a location in a lesson to which a student plans to return.
Bookmarks are placed by the student for his own reference and review
purposes.

AICC CMI Guidelines

Rev 3.0
21-Sep-99 302 CMI001

CAI Computer-aided Instruction. Sometimes Computer-assisted Instruction.
Normally used as a synonym for CBT. However some make the
following distinction between CAI and CBT.

CAI: The computer as an aid to learning. Supports instruction, but is
not the prime medium for delivery of instruction. Uses include
presentation or practice but not both. (ref. (j))

CBT: Computer as the primary mode of instruction. (ref. (j))

See CBT

CBT Computer-Based Training. The use of computers to provide an
interactive instructional experience. Also referred to as CAI (Computer
Assisted Instruction), CAL (Computer-aided Learning), CBE
(Computer Based Education), CBI (Computer-based Instruction), etc.

CGI Abbreviation of Common Gateway Interface, a specification for
transferring information between a World Wide Web server and a CGI
program.

A CGI program is any program designed to accept and return data that
conforms to the CGI specification. The program could be written in any
programming language, including C, Perl, or Visual Basic.

CGI programs are the most common way for Web servers to interact
dynamically with users. Many HTML pages that contain forms, for
example, use a CGI program to process the form's data once it's
submitted. Another increasingly common way to provide dynamic
feedback for Web users is to include scripts or programs that run on the
user's machine rather than the Web server. These programs can be Java
applets, Java scripts, or ActiveX controls. These technologies are known
collectively as client-side solutions, while the use of CGI is a server-
side solution because the processing occurs on the Web server. (from
Webopedia: www.pcwebopedia.com)

AICC CMI Guidelines

Rev 3.0
21-Sep-99 303 CMI001

CMI Computer-Managed Instruction has several definitions. In its broadest
sense, it includes the following:

1) Rostering and storing student information.

2) Scheduling students and resources.

3) Computer acquisition and storage of student performance data.
This is frequently referred to as Lesson Evaluation Data instead
of CMI.

4) Data presentation. After the data has been collected, it can be
massaged by the computer, providing meaningful summaries for
human interpretation. This is frequently referred to as data
analysis instead of CMI.

5) And finally, the computer can make decisions based on its
analysis of the student's performance. It can manage the
student's learning. It makes decisions as to what material the
student should cover next, what material is not necessary, and
what remedial actions if any, should be taken.

In some contexts, the term CMI excludes data collection and data
analysis. The strictest definition of CMI includes only the fifth aspect,
the computer management of the student.

The combination of items 3) and 4) above, is frequently referred to as
"Student Evaluation."

The focus of a CMI system is the management of a course.

complex objective An objective whose mastery requires
• Mastery of two or more objectives.
• Mastery of two or more other complex objectives.
• Completion of two or more lessons (assignable units).
• Completion of two or blocks.
• One or more objectives (complex or simple) and/or one or more

lessons and/or one or more blocks.

AICC CMI Guidelines

Rev 3.0
21-Sep-99 304 CMI001

core item A value in one of the three “core” groups for CMI/Lesson
communication. Most core items are mandatory. The three “core”
groups that contain mandatory data are Core, Core_Lesson
(suspend_data in the API data model), and Core_Vendor (launch_data
in the API data model.) Mandatory items are those, which a lesson may
always depend upon being available. The lesson may or may not use
the mandatory items, but they are available if required.

course A complete unit of training. A course generally represents what a
student needs to know in order to perform a set of related skills or
master a related body of knowledge.

Level 2 in the AICC Hierarchy of CBT Components:
1. Curriculum
2. Course
3. Chapter
4. Subchapter
5. Module
6. Lesson
7. Topic
8. Sequence
9. Frame
10. Object

course elements Three items which constitute the building blocks for a course
description. Each of these building blocks has its own title and
attributes.

• Assignable Unit (lesson)
• Block, and
• Objective.

AICC CMI Guidelines

Rev 3.0
21-Sep-99 305 CMI001

curriculum A grouping of related courses.

Level 1 in the AICC Hierarchy of CBT Components:
1. Curriculum
2. Course
3. Chapter
4. Subchapter
5. Module
6. Lesson
7. Topic
8. Sequence
9. Frame
10. Object

default A value, argument, or option that is assumed when another is not
explicitly specified.

demographics Information associated with a student prior to entering a course.
Student attributes. Typical demographic data includes the student's
name, job title, years of experience, and native language.

extension A feature that is not defined, but is permitted in this Specification.
Extensions are specified elsewhere and agreed upon outside the
Specification.

group A unit of information in a standardized file for storing CMI information.
Groups are large data items, generally several lines in length. A group
extends from the group identifier to the next group identifier, and may
include multiple lines. All carriage returns and symbols between group
identifiers may be significant, depending on the definition of the
specific group. Although groups may contain keywords, they may not
contain other groups.

hierarchy The structure of lessons and/or courses determining what will be the
student's next assignment

AICC CMI Guidelines

Rev 3.0
21-Sep-99 306 CMI001

HACP Initials standing for HTTP-based AICC CMI Protocol.

HTTP Short for HyperText Transfer Protocol, the underlying protocol used by
the World Wide Web. HTTP defines how messages are formatted and
transmitted, and what actions Web servers and browsers should take in
response to various commands. For example, when you enter a URL in
your browser, this actually sends an HTTP command to the Web server
directing it to fetch and transmit the requested Web page.

The other main standard that controls how the World Wide Web works
is HTML, which covers how Web pages are formatted and displayed.

HTTP is called a stateless protocol because each command is executed
independently, without any knowledge of the commands that came
before it. This is the main reason that it is difficult to implement Web
sites that react intelligently to user input. This shortcoming of HTTP is
being addressed in a number of new technologies, including ActiveX,
Java, JavaScript and cookies.

Currently, most Web browsers and servers support HTTP 1.0, but a new
version called 1.1 should be implemented soon. One of the main
features of HTTP 1.1 is that it supports persistent connections. This
means that once a browser connects to a Web server, it can receive
multiple files through the same connection. This should improve
performance by as much as 20%. (from Webopedia:
www.pcwebopedia.com)

IIOP Short for Internet Inter-ORB Protocol, a protocol developed by the
Object Management Group (OMG) to implement CORBA solutions
over the World Wide Web. IIOP enables browsers and servers to
exchange integers, arrays, and more complex objects, unlike HTTP,
which only supports transmission of text. (from Webopedia:
www.pcwebopedia.com)

item analysis. This can indicate how well an element of instruction trains; or how well
a test question measures student performance. This enables quality
control of the testing and instruction.

AICC CMI Guidelines

Rev 3.0
21-Sep-99 307 CMI001

interaction An exchange between a student and a program, beginning with a screen
touch, a mouse click, a keyboard, or other input by a student, followed
by an on-screen reaction of the program.

In the context of this guideline for storing student performance data: A
recognized and recordable input or group of inputs from the student to
the computer.

learning
management
system

All the functionality of a CMI system, plus the ability to schedule
learning resources and schedule and track learners over multiple
courses.

lesson A meaningful division of learning that is accomplished by a student in a
continuous effort -- that is at one sitting. That part of the learning that is
between designed breaks. Frequently requires approximately 20
minutes to an hour.
OR
A grouping of instruction that is controlled by a single executable
computer program.
Or
A unit of training that is a logical division of a subchapter, chapter, or
course.

Level 6 in the AICC Hierarchy of CBT Components:
1. Curriculum
2. Course
3. Chapter
4. Subchapter
5. Module
6. Lesson
7. Topic
8. Sequence
9. Frame
10. Object

lesson element An arbitrary division of an assignable unit that has been uniquely named
(has its own ID). An assignable unit may have from two to hundreds of
lesson elements.

AICC CMI Guidelines

Rev 3.0
21-Sep-99 308 CMI001

LMS Abbreviation for Learning Management System.

keyword A unit of information in a standardized file for storing CMI information.
Keywords are names of data items that are limited in size to a single
line. This generally limits the data to 60 or 70 characters.

Likert test A Likert test is made up of a series of Likert questions. Each question
offers the student a group of alternatives on a continuum. The response
is generally based on the student's opinion or attitude.

Typical scales are FROM
Strongly agree TO Strongly disagree
Should be more TO Should be less
Understand

completely
TO Do not understand

at all

One way in which the Likert test differs from a multiple choice test is
that the Likert test has no correct answer for each question.

See attitude survey.

mandatory Pertaining to features that are defined and required by this specification.

optional Pertaining to features that are defined but not required by this
Specification.

part-task trainer
(PTT)

A device that simulates a part of some sophisticated hardware, such as
an airplane. It permits selected aspects of a task to be practiced
independently of other elements of the task. Its purpose is to provide
economical training on certain elements requiring special practice but
that are not dependent upon the total equipment.

AICC CMI Guidelines

Rev 3.0
21-Sep-99 309 CMI001

performance
analysis.

Determination of a student's capabilities, based upon data collection of
the student's interactions within one or more lessons. This helps to
determine what the student knows, and what he learns. Comparing
individual student progress with his peers gives a measurement of
individual rate of learning.

RFC Short for Request for Comments, a series of notes about the Internet,
started in 1969 (when the Internet was the ARPANET). An RFC can be
submitted by anyone. Eventually, if it gains enough interest, it may
evolve into an Internet standard.

Each RFC is designated by an RFC number. Once published, an RFC
never changes. Modifications to an original RFC are assigned a new
RFC number. (from Webopedia: www.pcwebopedia.com)

router Software which sequences a series of lessons, tests, and other assignable
units in a course. The router determines the order in which the student
experiences segments of his computer-based training.

score A result of a learner’s assessment expressed as a numerical value or a
point on a descriptive scale.

session The period of time, during which a user of a terminal can communicate
with an interactive system, usually equal to elapsed time between logon
and logoff. (610.10 – 1994 IEEE Dictionary)

structure elements The parts of a course which can be uniquely assigned by a CMI system.
These are units that can be rearranged to determine the order in which a
student experiences a course of instruction. There are two structure
elements in the AICC view of a course description:

• Assignable unit (the lesson)
• Block

AICC CMI Guidelines

Rev 3.0
21-Sep-99 310 CMI001

TCP/IP Initials for Transmission Control Protocol/Internet Protocol, the suite of
communications protocols used to connect hosts on the Internet.

TCP/IP uses several protocols, the two main ones being TCP and IP.
TCP/IP is built into the UNIX operating system and is used by the
Internet, making it the de facto standard for transmitting data over
networks. Even network operating systems that have their own
protocols, such as Netware, also support TCP/IP.

URI Short for Uniform Resource Identifier, the generic term for all types of
names and addresses that refer to objects on the World Wide Web. A
URL is one kind of URI. (from Webopedia: www.pcwebopedia.com)

URL Abbreviation of Uniform Resource Locator, the global address of
documents and other resources on the World Wide Web.

The first part of the address indicates what protocol to use, and the
second part specifies the IP address or the domain name where the
resource is located.

For example, the two URLs below point to two different files at the
domain sandybay.com. The first specifies an executable file that should
be fetched using the FTP protocol; the second specifies a Web page that
should be fetched using the HTTP protocol:

 ftp://www.sandybay.com/stuff.exe
 http://www.sandybay.com/index.html

(from Webopedia: www.pcwebopedia.com)

AICC CMI Guidelines

Rev 3.0
21-Sep-99 311 CMI001

URL encoding HTML form data is usually URL encoded. For the AICC
interoperability, ALL AICC data that is part of the Request-Body must
be URL encoded. Here are the rules for URL encoding:

• Convert all "unsafe" characters in the names and values to "%xx",
where "xx" is the ASCII value of the character, in hex.

• The only safe characters are alphanumerics and the following
$ - _ . ! * " () ,
All other characters are unsafe.

• Examples of unsafe characters are
= & % +

• Change each space to "+" (plus) or "%20".

value Keyword data. The information relating to a keyword that appears to
the right of the equal sign. Also called keyword argument.

Rev 3.0
1-Sep-99 312 CMI001

Index

&
& logic operator, 178

(
(), 179

_
_children, 270
_count, 270
_version, 270

{
{ }, 178

|
| logic operator, 178

~
~ logic operator, 178

A
ab initio flag, 70
AICC_SID, 247
AICC_URL, 247
alternate treatments of lessons, 6
AND logic operator, 178
API, 301
API set, 265
API-based CMI communication,

256
application programming interface,

301
argument, 301
argument, keyword, 43
arrays, 266
ASCII file types, 33
asignable unit password, 245
assignable unit, 11, 301
assignable unit file, 155
assignment of lessons, 6, 13
attempt_number keyword, 92
attitude survey, 28, 301
AU, 301
audio keyword, 104

B
batch registration, 10
behavior, lesson, 67
blank lines between keywords, 44
block, 7, 301
bookmark, 301
browse mode, 67
browsed status, 69

C
CAI, 302
carriage return, 39
carriage return, embedded, 46
CBT, 302
CBT/CMI mismatch errors, 132
CGI, 302
city keyword, 99
class keyword, 99
CMI, 303
CMI components, 3
CMI data file missing, 132
CMI/Lesson Communication, 50
CMIBlank, 289
CMIBoolean, 289
CMIDate, 289
CMIDecimal, 290
CMIFeedback, 289
CMIInteger, 290
CMISIdentifier, 290
CMISInteger, 290
CMIString256, 290
CMIString4096, 290
CMITime, 290
CMITimespan, 290
CMI-to-CBT file, 55
CMIVocabulary, 290
combined data model table, 298
comma delimited file, 46
command line field, 157
comment field, 197
comments, 40
comments group, 79
comments, student, 118
comments_file keyword, 82
company keyword, 99
completed status, 69
completion requirements file, 182
complex objective, 303
components of CMI, 3
Computer-based Instruction, 302
Computer-Managed Instruction, 303

conformance, 261
conforming, 259
consolidated data model table, 298
content of course, 23
continued line error, 131
core group, 63, 114
core item, 304
core vendor field, 160
core_lesson group, 77, 117
core_vendor group, 78
correct response field, 203
country keyword, 99
course, 304
course building blocks, 136
course complexity levels, 137
course content, 23
course description data, 137
course descriptor file, 161
course design, 5
course elements, 136, 304
course file, 143
course structure, 23
course structure concept, 134
course structure table, 166
course_behavior, 152
course_creator keyword, 146
course_id keyword, 82, 146
course_system keyword, 146
course_title keyword, 147
courseware analysis, 27
credit keyword, 66
curriculum, 305

D
data collection, 9
data comparison, 292
data error in file, 130
data levels, 18
data model, 265
data types, 289
date field, 196
default, 305
demographics, 305
description field, 165
descriptor file, 161
design of courses, 5
determine diagnostics, 276
determine error code, 274
developer_id field, 164
development of courses, 5
diagnostics, 276
disenrollment, 10
duplicate group error, 130
duplicate keyword error, 130

AICC CMI Guidelines

Rev 2.0
1-Feb-98 313 CMI001

E
element, 265
element location field, 221
element, lesson, 307
elements, course, 136
elements, lesson, 217
elements, structure, 136
e-mail, 15
embedded carriage return, 46
equals in logic statement, 178
error conditions, 128
error, HTTP, 252
evaluation group, 81
ExitAU, 255
experience keyword, 100
extension, 259
extension, keyword, 43

F
failed status, 69
familiar_name keyword, 100
file creation error, 129
file for CMI-to-CBT data, 55
file limits, 49
file name field, 158, 243
file read error, 129
file types, 33
file write error, 129
finish, 269
first-level data, 18
flags for status, 115
functions of CMI, 3

G
get a value, 270
GetParam, 254
group, 305
group error, 130
group name, 39

H
HACP, 306
hierarchies, 6
hierarchy, instructional materials,

305
HTTP, 306
HTTP message format, 250
HTTP-based CMI Protocol, 235

I
IIOP, 306
illegal keyword error, 130, 131
implied order, 134
incompleted status, 69

index arrays, 266
initialize, 269
instructor_name keyword, 101
interaction, 307
interaction correct response, 203
interaction element ID, 223
interaction id field, 200
interaction latency, 212
interaction response, 209
interaction result, 210
interaction type, 201
interaction weighting, 211
interactions_file keyword, 83
Interoperability Overview, 21
interoperability, reasons for, 28
Introduction, 1
item analysis, 9, 27, 306

J
J_ID keyword, 86
j_score keyword, 87
job_title keyword, 101

K
keyword, 308
keyword argument, 43
keyword error, 130
keyword extension, 43
keyword identification, 45
keyword name, 39
keyword order, 44
keyword table, 226
keyword usage rules, 44
keyword value, 43

L
language keyword, 104
latency field, 212
launch, web, 238
learning management system, 307
lesson, 307
lesson assignment, 6, 13
lesson behavior, 67
lesson element, 307
lesson element status, 222
lesson elements, 217
lesson id field, 195
lesson security, 15
lesson status, 69
lesson_location keyword, 65, 115
lesson_mode keyword, 67
lesson_status keyword, 69, 93, 115
lesson_type keyword, 105
level 1 definition, 137
level 2 definition, 138
level 3 definition, 139

level keyword, 147
level-one data, 18
levels of complexity, 137
levels of data, 17
level-two data, 18
Likert question, 202
Likert test, 308
limits, files, 49
line feed, 39
lists, 266
LMS, 308
LMSCommit, 273
LMSfinish, 269
LMSGetDiagnostic, 276
LMSGetErrorString, 275
LMSGetLastError, 274
LMSGetValue, 270
LMSInitialize, 269
LMSSetValue, 272
location field, 196
logic operator, 177
logic statement, 177
logon, student, 15

M
mail, 15
mandatory, 259, 308
mass registration, 10
mastery time field, 216
mastery_score keyword, 94
max score field, 159
max_fields_cst keyword, 148
max_fields_obj keyword, 148
max_normal keyword, 153
max_time_allowed keyword, 95
missing group error, 130
missing keyword error, 130
misspelled keyword error, 130
modes, 67
multi-line error, 131

N
name, group or keyword, 39
name/value pairs, 250
native_language keyword, 101
normal mode, 67
not attempted status, 70
NOT logic operator, 178

O
objective id field, 201
objective relationships file, 171
objectives file, 171
objectives status file, 213
objectives_status group, 85, 120
objectives_status status, 89

AICC CMI Guidelines

Rev 2.0
1-Feb-98 314 CMI001

objectives_status_file keyword, 83
obligation, 259
obtain text of error, 275
optional, 259, 305, 308
optional item, CMI to lesson, 60
OR logic operator, 178
order of keywords, 44
output_file keyword, 65

P
PARAM.CMI, 55
parameters, 264
passed status, 69
path file, 217
path keyword, 73
path_file keyword, 84
performance analysis, 27, 309
performance data, 27
performance_file keyword, 84
prerequisites file, 173
PTT (part-task trainer), 18, 308
PutComments, 255
PutInteractions, 255
PutObjectives, 255
PutParam, 255
PutPath, 255
PutPerformance, 255

Q
question type, 201

R
request for comments, 309
request, HTTP, 251
required item, CMI to lesson, 60
resources, 7
response, HTTP, 252
result field, 210
resume flag, 70
review mode, 67
RFC, 254, 309
roster operations, 10
router, 13, 23, 309

S
score, 309
score keyword, 74, 96, 116
score_for_try keyword, 123
second level data, 18
security, 15
self registration, 15
self rostering, 15
self-rostering, 10
send cache, 273
sequencing keywords, 44

session, 309
set a value, 272
sets in logic statement, 178
speed keyword, 106
state keyword, 102
status field, 222
status flags, 115
status keyword, 89
status_for_try keyword, 124
street_address keyword, 102
strictly conforming, 259
structure elements, 136
structure of course, 23
student comments, 118
student performance, 27
student response field, 209
student_data group, 91, 122
student_demographics group, 98
student_ID keyword, 64
student_name keyword, 64
student_preferences group, 103, 126
support, 261
system id field, 157
system vendor field, 159
system_id field, 163

T
table of keywords, 226
TCP/IP, 310
telephone keyword, 102
test types, 9
text keyword, 107
text_color keyword, 108
text_location keyword, 109
text_size keyword, 110
time field, 196, 200
time in element field, 224
time keyword, 76, 116
time_for_try keyword, 125
time_limit_action keyword, 97
title field, 165
total_aus keyword, 149
total_blocks keyword, 149
total_complex_obj keyword, 150
total_objectives keyword, 150
tries_in_lesson keyword, 123
type field, 157
type interaction field, 201
types of files, 33

U
URI, 310
URL, 310
URL encoding, 311

V
value, 311
value, keyword, 43
version keyword, 151
video keyword, 110

W
web launch parameters, 244
weighting field, 211
why left field, 223
window.01 keyword, 111

X
X* logic operator, 179

Y
years_experience keyword, 102

AICC CMI Guidelines

Rev 2.0
1-Feb-98 315 CMI001

