

PartnerService User Guide
Importing Users

Revision

Date Author Version Description

4/20/2009 Paul Littlefield 1.0 Initial Draft – Login, Logout, User Import

12/28/2009 Paul Littlefield 1.1 Updated error handling section

Table of Contents

Table of Contents .. 2
Introduction ... 3
EndPoints .. 3
WSDL ... 3

Development Process .. 3
Login ... 4

SFCredential ... 4
LoginResult (Extended from SFObject) ... 4
Managing the Session ID .. 5

Example SOAP Request for Login ... 5
Example SOAP Response for Login... 5

Logout ... 5
Example SOAP Request for Logout ... 6

Example SOAP Response for Logout... 6
Importing Users .. 6

UserObject (Extended from SFObject) ... 6
SFObject ... 7
SFAttribute (Extended from SFObject) .. 7

SFAttributes for UserObject ... 7
PutResult (Extended from SFObject – permissioned access) ... 9

Handling Errors ... 9
SFWebServiceError (Extended from SFObject) .. 9
Error Descriptions and Error Numbers ... 9

Other PartnerService API Error Codes ... 12

Example SOAP Request for Put UserObject .. 13
Example SOAP Response for Put UserObject – Successful .. 14
Example SOAP Response for Put UserObject with Errors .. 14

Introduction

The SuccessFactors PartnerService API is a SOAP Web Service that can be used to

programmatically exchange data with a SuccessFactors hosted application instance. It is

implemented in SOAP 1.1 with an RPC/encoded WSDL.

This document is a user guide focused on importing user into the SuccessFactors system.

For a broader reference guide on the API please see the document titled “SuccessFactors

PartnerService API Reference Guide v1.6”.

EndPoints

Your endpoint will depend on where your SuccessFactors instance is located. It can be

one of three data centers. Please contact your SuccessFactors representative if you are

unsure of which data center to use. The endpoints are below.

Data Center Location Endpoint URL
Europe https://soap.successfactors.eu/axis/services/PartnerService
USA, New Jersey https://soap.successfactors.com/axis/services/PartnerService
USA, Arizona https://soap4.successfactors.com/axis/services/PartnerService

WSDL

The WSDL can be accessed by appending “?wsdl” to the endpoint.

Data Center Location WSDL
Europe https://soap.successfactors.eu/axis/services/PartnerService?wsdl
USA, New Jersey https://soap.successfactors.com/axis/services/PartnerService?wsdl
USA, Arizona https://soap4.successfactors.com/axis/services/PartnerService?wsdl

Development Process

In order to access the Partner API it must be enabled for your company instance. Contact

your SuccessFactors Professional Services or Customer Success representative if you

want the Partner API enabled.

Once the API is enabled you can access your instance through the API using any valid

user. The API interaction is session based, meaning that the first step is to login to

establish an API session. Then you may invoke put and get calls. When you are finished,

you may logout, or let the session expire automatically after 30 minutes of activity (this is

known as a session timeout).

It is your choice whether you develop and test against your live production instance or a

separate test instance. Test instances typically incur additional costs. Ask your

SuccessFactors representative if you are interested in a test instance.

https://soap.successfactors.eu/axis/services/PartnerService
https://soap.successfactors.com/axis/services/PartnerService
https://soap4.successfactors.com/axis/services/PartnerService
https://soap.successfactors.eu/axis/services/PartnerService?wsdl
https://soap.successfactors.com/axis/services/PartnerService?wsdl
https://soap4.successfactors.com/axis/services/PartnerService?wsdl

Login

Login is accomplished from the Login method call. Users must be sure they are

contacting the correct web services endpoint for their SuccessFactors instance. Contact

your SuccessFactors support representative if you are unsure.

Below is a listing of the various endpoints that exist today.

Data Center Location Endpoint URL

Europe https://soap.successfactors.eu/axis/services/PartnerService

USA, New Jersey https://soap.successfactors.com/axis/services/PartnerService

USA, Arizona https://soap4.successfactors.com/axis/services/PartnerService

Once you have the correct endpoint, login is accomplished with the login method call.

This has the signature listed below

 LoginResult login(SFCredential)

The SFCredential and LoginResult objects are documented below. In the SFCredential

object, only three fields are actually used: CompanyID, Username and Password.

SFCredential

This must be passed in the login method.
Name Type Description

PartnerID String

CompanyID String Identifies the SuccessFactors client instance.

Username String Username (must be a valid user in the specified client

instance).

Password String Password associated with the Username.

clientIP String

Expire String

Timezone String

tkloginKey String

callerHash String

LoginResult (Extended from SFObject)

This object is returned from a successful login call.
Name Type Description

URL String Not used

SessionId String The session identifier assigned by the server.

https://soap.successfactors.eu/axis/services/PartnerService
https://soap.successfactors.com/axis/services/PartnerService
https://soap4.successfactors.com/axis/services/PartnerService

Managing the Session ID

The LoginResult will contain the SessionId for the login. Rather than manage the

sessionId yourself, most users will typically enable cookies in the HTTP session, and let

the HTTP protocol manage the session attribute for you. Then the login request (SOAP

over HTTP) will set the session Id attribute as a cookie.

Once a login is established, it will be valid until either a logout() call is made, or the

session timeout is reached (30 minutes) due to inactivity on the session.

Example SOAP Request for Login
<soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:partnerservice="http://partnerService.successfactors.com">

 <soapenv:Header/>

 <soapenv:Body>

 <partnerservice:login>

 <credential>

 <companyId xsi:type="xsd:string">ACE123</companyId>

 <username xsi:type="xsd:string">cgrant</username>

 <password xsi:type="xsd:string">password-string</password>

 </credential>

 </partnerservice:login>

 </soapenv:Body>

</soapenv:Envelope>

Example SOAP Response for Login
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

 <soapenv:Body>

 <ns1:loginResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:ns1="http://server.partnerService.axis.sfv4.sf.com">

 <loginReturn href="#id0"/>

 </ns1:loginResponse>

 <multiRef id="id0" soapenc:root="0"

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="ns2:LoginResult"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:ns2="urn:PartnerService">

 <lastModified xsi:type="soapenc:string" xsi:nil="true"/>

 <locale xsi:type="soapenc:string" xsi:nil="true"/>

 <objectId xsi:type="soapenc:string" xsi:nil="true"/>

 <sessionId xsi:type="soapenc:string">3389B6BB58EB7112DC80DD7D7FF0A60E </sessionId>

 <sfAttributes xsi:type="soapenc:Array" xsi:nil="true"/>

 <url xsi:type="soapenc:string"/>

 </multiRef>

 </soapenv:Body>

</soapenv:Envelope>

Logout

Logout is accomplished with the logout() call. There are no parameters to this call, and

no values are returned.

Example SOAP Request for Logout
<soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ns1="http://server.axis.sfv4.sf.com">

 <soapenv:Header/>

 <soapenv:Body>

 <ns1:logout soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </soapenv:Body>

</soapenv:Envelope>

Example SOAP Response for Logout
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

 <soapenv:Body>

 <ns1:logoutResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:ns1="http://server.axis.sfv4.sf.com"/>

 </soapenv:Body>

</soapenv:Envelope>

Importing Users

Importing users with the PartnerService API is accomplished through the “put” method

by passing in an array of “UserObjects”. The call signature for put is:

PutResult put(String, SFObject[])

This API uses a polymorphic approach, so you can call the put method with an array of

objects that subclass the generic SFObject class. UserObject is the subtype to use to

import users.

The “UserObject” is defined in the table below. It has only two strongly typed fields

(Username and UserID).

UserObject (Extended from SFObject)
System user record. User fields not explicitly defined here are added as SFAttribute objects.

Name Type Description

Username String Unique username

UserID String Unique userID (could be same as username)

In addition to the attributes listed above, SFObject inherits from the SFObject class (it

extends the SFObject class) and therefore has an array of SFAttributes objects. An

SFAttribute is a generic container object which are basically name/value pairs of

information. This array of SFAttributes is utilized to import the rest of the fields desired

for importing data in a UserObject. A separate table below lists the valid values allowed

in SFAttributes when importing a UserObject.

The SFObject and SFAttribute objects are documented in the tables below.

SFObject

Base SuccessFactors object
Name Type Description

ObjectID String Unique identifier of the object.

Locale String Describes the locale of the user session.

LastModified String Last modified date, in format “yyyy-mm-

ddThh:mi:ss”

SFAttributes SFAttribute[] Optional list of attributes to handle custom fields

SFAttribute (Extended from SFObject)
A name/value pair used as custom fields for each object.

Name Type Description

Name String Describes the attribute. Examples: “Planned”, “Registered”, “Start”, “Completed”

Value String Value corresponding to the attribute

Type String Data type definition of the attribute. Examples “String”, “Date”, “Number”

SFAttributes for UserObject

The following is a list of attributes that may be set for a UserObject when importing. For

all of these attributes, set the Type to “String” in the SFAttribute object. For example,

<SFAttribute >
 <Name>FIRSTNAME</Name>
 <Type>String</Type>
 <Value>John</Value>
</SFAttribute>

Name Example Description

STATUS active Valid values (case sensitive): active, inactive, transfer,

active_external, inactive_external

FIRSTNAME Charles First

LASTNAME Grant Last

MI X Middle Initial

GENDER M Gender: M or F

EMAIL cg@successfactors.com Email

MANAGER ftarzanin User ID of manager, “NO_MANAGER” for no manager

HR dito User ID of HR, “NO_HR” for no HR

DEPARTMENT Engineering Department

DIVISION Successfactors Division

LOCATION San Mateo Location

GROUP Server Group

JOBCODE xyz Job Code

TIMEZONE PST Time Zone

DEFAULT_LOCALE en_US Locale

HIREDATE 01-30-2006 MM-dd-yyyy, can also be locale specific

PASSWORD someString Password

MATRIX_MANAGER flim|byip Pipe separated list of matrix managers

CUSTOM_MANAGER flim|byip Pipe separated list of custom managers

PROXY flim|byip Pipe separated list of proxies

SECOND_MANAGER wdoolittle User ID of second manager

TITLE Software Engineer Title

BIZ_PHONE 111-222-3333 Business Phone

FAX 111-222-3333 Fax

ADDR1 Address line 1

ADDR2 Address line 2

CITY City

STATE State

ZIP Zip

COUNTRY Country

EMPID Employee ID (on customer side)

REVIEW_FREQ Review Frequency

LAST_REVIEW_DATE Last Review Date

CUSTOM01 Custom fields 01 – 15

CUSTOM* Custom fields 01 – 15. You have 15, so identification is

CUSTOM01, CUSTOM02, etc through CUSTOM15.

sendWelcomeMessage true/false UI Equivalent: Send Welcome Message to New Users.

validateMgrHr true/false UI Equivalent: Validate Manager and HR fields.

managerTransfer true/false Automatic Manager Transfer flag

routeDocument true/false UI Equivalent: Automatic insertion of new manager as

next document recipient if not already.

routeInboxDoc true/false UI Equivalent: Automatic Inbox Document Transfer To

New Manager

routeEnRouteDoc true/false UI Equivalent: Automatic En Route Document Transfer

To New Manager

routeCompletedDoc true/false UI Equivalent: Automatic Completed Document Copy to

New Manager

managerOnlyCompany true/false UI Equivalent: Enforce Manager-only Implementation.

removeInProgressDocsForInactiveUsers true/false UI Equivalent: Remove Inactive Employees' In-Progress

Documents

removeCompletedDocsForInactiveUsers true/false UI Equivalent: Remove Inactive Employees' Completed

Documents

removeInactiveFromInProgressComp true/false Remove the inactive user from in-progress comp plans

removeInProgressCompForInactiveUsers true/false Remove the inactive users' in-progress comp plans

removeCompletedCompForInactiveUsers true/false Remove the inactive users' completed comp plans

removeBudgetForInactiveUsers true/false Remove the inactive users' completed comp plans budget

defaultPasswordField USERID, EMAIL,

FIRSTNAME,

LASTNAME,

RANDOM_PWD

If password is not given, use specified field as default

password

The return type of the generic put method is a PutResult object. The PutResult object is

documented below.

PutResult (Extended from SFObject – permissioned access)

Returned object from put method.
Name Type Description

ResultCode Integer If put request is successful, returns 1. Otherwise,

returns 0.

Errors SFWebServiceError[] Array of SFWebServiceError objects describing

errors and warnings

Handling Errors

If the PutResult object has encountered errors, the ResultCode field will be set to 0

(zero). Detailed information on the error condition will be contained in an array of

SFWebServiceError objects, which have the following format.

SFWebServiceError (Extended from SFObject)

Error object
Name Type Description

Code String Error code

Type String Type of Error (ie, “Warning”, Error”)

Description String Error description

The recommended error handling is to catch all errors (ResultCode = 0) and have an

administrator review the Description in the SFWebService error and compare it to the

actual User record data being imported. The administrator should consult the table below

to remedy the error.

Error Descriptions and Error Numbers

The Description field of the SFWebService error will contain a textual description of the

error encountered, and may reference an error number for more information. The error

number can be used for more information from the table below.

For example, an error description may be:

Update failed for user: cgrant: with error: -12

Referring to the table below, we see that Error Number -12 indicates that a duplicate

username was encountered. The remedy is to ensure that a unique username is used when

creating a new user in the SuccessFactors system.

Error Number
referenced in
<description>
element

Description Impact Remedy

-1 Internal general error. Data in the API
request may or may

Contact SuccessFactors
directly to find out the

not be updated. root cause and find the
appropriate resolution.

-6 Invalid User ID. This happens when you
are trying to create a user record with a
User ID that is not conforming to the
SuccessFactors system’s User ID
standard. Please refer to this
documentation on what can be used in a
User ID:
<LINK_TO_PM_DATA_DOCUMENTATIO
N>.

No data will be
updated.

Check if the new User ID
conforms to the
SuccessFactors system
or not. If it doesn’t
please make the
appropriate changes. If
it does, please contact
SuccessFactors to find
out why you are getting
this error.

-10 A cycle was found in the manager
hierarchy. For example, the following
would be a cycle: User1 has manager
User2 and User2 has manager User1.

The Manager field will
not be updated. Other
fields in the request
may still be updated in
our system.

Check if a Manager
reporting cycle has been
formed when updating a
user’s Manager. If yes,
please correct the cycle.
If not, please contact
SuccessFactors to find
out why you are getting
this error.

-11 Invalid Username. This happens when
you are trying to create a user record with
a Username that is not conforming to the
SuccessFactors system’s Username
standard. Please contact SuccessFactors
for a documentation on a full list of
supported characters in Username.

No data will be
updated.

Check if the new
Username conforms to
the SuccessFactors
system or not. If it
doesn’t please make the
appropriate changes. If
it does, please contact
SuccessFactors to find
out why you are getting
this error.

-12 Duplicate Username. This happens when
you are trying to update a user record
with a Username that is already in use by
another user (active or inactive) in the
system.

No data will be
updated.

Check if the Username
is already used by
another user (active or
inactive) in the
SuccessFactors system.
If it is, please resolve the
Username conflict. If it
isn’t, please contact
SuccessFactors to find
out why you are getting
this error.

-20 Matrix Manager does not exist when
trying to update the Matrix Manager field
for a user.

The Matrix Manager
field will not be
updated. Other fields
in the request may still
be honored and
updated in our system.

Check if the Matrix
Manager exists in the
SuccessFactors system
or not. If it doesn’t exist,
please import the Matrix
Manager first. If it does,
please contact
SuccessFactors to find
out why you are getting
this error.

-21 Proxy User does not exist when trying to
update the Proxy User field for a user.

The Proxy User field
will not be updated.
Other fields in the
request may still be

Check if the Proxy User
exists in the
SuccessFactors system
or not. If it doesn’t exist,

honored and updated
in our system.

please import the Proxy
User first. If it does,
please contact
SuccessFactors to find
out why you are getting
this error.

-22 Custom Manager does not exist when
trying to update the Custom Manager field
for a user.

The Custom Manager
field will not be
updated. Other fields
in the request may still
be honored and
updated in our system.

Check if the Custom
Manager exists in the
SuccessFactors system
or not. If it doesn’t exist,
please import the
Custom Manager first. If
it does, please contact
SuccessFactors to find
out why you are getting
this error.

-23 Second Manager does not exist when
trying to update the Second Manager field
for a user.

The Second Manager
field will not be
updated. Other fields
in the request may still
be honored and
updated in our system.

Check if the Second
Manager exists in the
SuccessFactors system
or not. If it doesn’t exist,
please import the
Second Manager first. If
it does, please contact
SuccessFactors to find
out why you are getting
this error.

-24 A Second Manager Cycle has been
detected when trying to update the
Second Manager field for a user.

The Second Manager
field will not be
updated. Other fields
in the request may still
be honored and
updated in our system.

Check if there is indeed
a Second Manager
reporting cycle has been
formed when updating a
user’s Second Manager.
If it does, please correct
the cycle. If it doesn’t,
please contact
SuccessFactors to find
out why you are getting
this error.

-20 Internal general error related to Matrix
Manager and/or HR Manager relationship
changes.

The Matrix and/or HR
Manager fields will not
be updated. Other
fields in the request
may still be honored
and updated in our
system.

Please contact
SuccessFactors to find
out why you are getting
this error.

-21 Duplicate Tag. This happens when trying
to add/assign a duplicate Tag to a user.

The duplicate Tag will
not be added. Other
fields in the request
may still be honored
and updated in our
system.

Check if the Tag is
duplicate to the user in
the SuccessFactors
system. If it is, do not
assign the Tag to the
user. If it isn’t, please
contact SuccessFactors
to find out why you are
getting this error.

-22 The user account used for Web Services
API authentication isn’t validated or set up
properly in our system.

No data will be
updated.

Check if the user is
properly set up and
validated in the

SuccessFactors system
or not. If it isn’t, then
either find an alternative
user to invoke Web
Services API calls or
complete the user setup
and/or validation. If it
does, please contact
SuccessFactors to find
out why you are getting
this error.

Other PartnerService API Error Codes

Value in <description>
element

Description Impact Remedy

Invalid Manager specified
for user: <USERID>

Manager does not exist
when trying to update the
Manager field for a user.

The Manager field
will not be updated.
Other fields in the
request may still be
honored and updated
in our system.

Check if the Manager exists in
the SuccessFactors system or
not. If it doesn’t exist, please
import the manager first before
importing its direct reports. If it
does, please contact
SuccessFactors to find out
why you are getting this error.

Invalid HR specified for
user: <USERID>

HR does not exist when
trying to update the HR
field for a user.

The HR field will not
be updated. Other
fields in the request
may still be honored
and updated in our
system.

Check if the HR exists in the
SuccessFactors system or not.
If it doesn’t exist, please import
the HR first. If it does, please
contact SuccessFactors to find
out why you are getting this
error.

Failed to deactivate user:
<USERID> - User does
not exist

This happens when trying
to deactivate a user that
doesn’t exist in our
system.

No updates will
happen in our
system.

Check if the user exists in our
system or not. If it doesn’t,
then there is no need and way
to deactivate a non-existent
record. If it does, please
contact SuccessFactors to find
out why you are getting this
error.

Failed to deactivate user:
<USERID>

This happens when trying
to deactivate a user that is
already inactive.

No updates will
happen in our
system.

Check if the user is active in
our system. If it isn’t, then you
can ignore this error. If it is,
please contact
SuccessFactors to find out
why you are getting this error.

Exception caught when
routing documents for
user: …

An internal exception
happened when trying to
transfer documents from a
former manager to the new
manager for an employee.

The Manager field
may or may not be
updated. All other
fields in the request
may still be honored
and updated in our
system.

Please contact
SuccessFactors and provide
the API response to us for
investigation.

Exception caught when
loading user: …

This is a generic catch-all
error when trying to create
or update a user.

The fields in the
request may or may
not be updated in our

Please contact
SuccessFactors and provide
the API response to us for

system. investigation.

Error: Missing required
field for user: …

This happens when the
API request does not
provide all required fields
for creating or updating a
user record.

The request will be
rejected and no
updates will happen
in our system.

Review the detailed
description of the error and
find out what are the missing
fields. Provide valid values to
those missing fields and re-
submit the request. If the
fields do have valid values in
the request, please contact
SuccessFactors to find out
why you are getting this error.

Field lengths are incorrect
for user: …

This happens when the
API request contains
certain fields whose
lengths are in violation of
field length restriction.

The request will be
rejected and no
updates will happen
in our system.

Review the detailed
description of the error and
find out which fields are
violating the field length
restriction which is defined in
your Data Model. You can
contact SuccessFactors to find
out if and what are the field
length restrictions defined in
your company’s Data Model.
Fix the violations and re-
submit the request. If the
fields do have valid length in
the request, please contact
SuccessFactors to find out
why you are getting this error.

Example SOAP Request for Put UserObject
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

 <soapenv:Body>

 <ns1:put soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:ns1="PartnerService">

 <string xsi:type="xsd:string">UserObject</string>

 <SFObject soapenc:arrayType="ns2:SFObject[1]" xsi:type="soapenc:Array"

xmlns:ns2="urn:PartnerService" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">

 <SFObject href="#id0"/></SFObject>

 </ns1:put>

 <multiRef id="id0" soapenc:root="0"

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="ns3:UserObject"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:ns3="urn:PartnerService">

 <sfAttributes soapenc:arrayType="ns3:SFAttribute[1]" xsi:type="soapenc:Array">

 <sfAttributes href="#id1"/>

 </sfAttributes>

 <userID xsi:type="xsd:string">cgrant_123</userID>

 <username xsi:type="xsd:string">cgrant</username>

 </multiRef>

 <multiRef id="id1" soapenc:root="0"

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="ns5:SFAttribute"

xmlns:ns5="urn:PartnerService" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">

 <name xsi:type="xsd:string">CITY</name>

 <type xsi:type="xsd:string">String</type>

 <value xsi:type="xsd:string">San Mateo</value>

 </multiRef>

 </soapenv:Body>

</soapenv:Envelope>

Example SOAP Response for Put UserObject – Successful

Below is a put response from a successful put UserObject call. Notice that the resultCode

in the putResponse object is “1”, indicating success.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:putResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns1="PartnerService">
 <putReturn href="#id0"/>
 </ns1:putResponse>
 <multiRef id="id0" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="ns2:PutResult"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:ns2="urn:PartnerService">
 <errors xsi:type="soapenc:Array" xsi:nil="true"/>
 <lastModified xsi:type="xsd:string" xsi:nil="true"/>
 <locale xsi:type="xsd:string" xsi:nil="true"/>
 <objectId xsi:type="xsd:string" xsi:nil="true"/>
 <resultCode xsi:type="xsd:int">1</resultCode>
 <sfAttributes xsi:type="soapenc:Array" xsi:nil="true"/>
 </multiRef>
 </soapenv:Body>
</soapenv:Envelope>

Example SOAP Response for Put UserObject with Errors

Below is an example put response where an error was encountered. Notice that the result

code in the putResponse object is “0”, indicating failure.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:putResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns1="PartnerService">
 <putReturn href="#id0"/>
 </ns1:putResponse>
 <multiRef id="id0" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="ns2:PutResult"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:ns2="urn:PartnerService">
 <errors soapenc:arrayType="ns2:SFWebServiceError[1]" xsi:type="soapenc:Array">
 <errors href="#id1"/>
 </errors>
 <lastModified xsi:type="soapenc:string" xsi:nil="true"/>
 <locale xsi:type="soapenc:string" xsi:nil="true"/>
 <objectId xsi:type="soapenc:string" xsi:nil="true"/>
 <resultCode xsi:type="xsd:int">0</resultCode>

 <sfAttributes xsi:type="soapenc:Array" xsi:nil="true"/>
 </multiRef>
 <multiRef id="id1" soapenc:root="0"
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="ns3:SFWebServiceError" xmlns:ns3="urn:PartnerService"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
 <code xsi:type="soapenc:string">INTERNAL_ERROR</code>
 <description xsi:type="soapenc:string">Update failed for user: cgrant: with error: -
12</description>
 <lastModified xsi:type="soapenc:string" xsi:nil="true"/>
 <locale xsi:type="soapenc:string" xsi:nil="true"/>
 <objectId xsi:type="soapenc:string" xsi:nil="true"/>
 <sfAttributes xsi:type="soapenc:Array" xsi:nil="true"/>
 <type xsi:type="soapenc:string">Error</type>
 </multiRef>

 </soapenv:Body>

</soapenv:Envelope>

