
How	to	use	Jconsole
by	John
2015-01-14

1. Starting JConsole
The	jconsole	executable	can	be	found	in	JDK_HOME/bin,	where	JDK_HOME	is	the	directory	in	which	the	Java	Development	Kit	(JDK)	is	installed

2. Creating a Connection to a Local Process

3. Viewing Overview Information
The	Overview	tab	displays	graphical	monitoring	information	about	CPU	usage,	memory	usage,	thread	counts,	and	the	classes	loaded	in	the	Java	VM,	all	in	a	single	screen.

3.1 Monitoring Memory Consumption
The	Memory	tab	provides	information	about	memory	consumption	and	memory	pools.

3.1.1 Generations of Data in Garbage Collection

Username	and	password	could	be	added	in	conf/tomcat-users.xml	in	your	installation,	if	you've	
never	setup	Tomcat	user.	
For	example,	to	add	the	manager-gui	role	to	a	user	named	tomcat	with	a	password	of	s3cret,	add	
the	following	to	the	conf/tomcat-users.xml.

<role	rolename="manager-gui"/>
<user	username="tomcat"	password="s3cret"	roles="manager-gui"/>

Note:	Please	restart	Tomcat	after	adding	user.

The	Memory	tab	features	a	“Perform	GC”	button	that	you	can	click	to	perform	garbage	collection	whenever	you	want.
Garbage	collection	(GC)	is	how	the	Java	VM	frees	memory	occupied	by	objects	that	are	no	longer	referenced.	It	is	
common	to	think	of	objects	that	have	active	references	as	being	"alive"	and	non-referenced	(or	unreachable)	objects	as	
"dead."	Garbage	collection	is	the	process	of	releasing	memory	used	by	the	dead	objects.	The	algorithms	and	parameters	
used	by	GC	can	have	dramatic	effects	on	performance.

Eden	Space	(heap):	The	pool	from	which	memory	is	initially	allocated	for	most	objects.
Survivor	Space	(heap):	The	pool	containing	objects	that	have	survived	the	garbage	collection	of	the	Eden	space.
Tenured	Generation	(heap):	The	pool	containing	objects	that	have	existed	for	some	time	in	the	survivor	space.
Permanent	Generation	(non-heap):	The	pool	containing	all	the	reflective	data	of	the	virtual	machine	itself,	such	as	class	and	method	objects.	With	Java	VMs	that	
use	class	data	sharing,	this	generation	is	divided	into	read-only	and	read-write	areas.
Code	Cache	(non-heap):	The	HotSpot	Java	VM	also	includes	a	code	cache,	containing	memory	that	is	used	for	compilation	and	storage	of	native	code.

Used:	the	amount	of	memory	currently	used,	including	the	memory	occupied	by	all	objects,	both	reachable	and	unreachable.
Committed:	the	amount	of	memory	guaranteed	to	be	available	for	use	by	the	Java	VM.	The	amount	of	committed	memory	may	change	over	time.	The Java	virtual	
machine	may	release	memory	to	the	system	and	the	amount	of	committed	memory	could	be	less	than	the	amount	of	memory	initially allocated	at	start	up.	The	
amount	of	committed	memory	will	always	be	greater	than	or	equal	to	the	amount	of	used	memory.
Max:	the	maximum	amount	of	memory	that	can	be	used	for	memory	management.	Its	value	may	change	or	be	undefined.	A	memory	allocation	may	fail	if	the	Java	
VM	attempts	to	increase	the	used	memory	to	be	greater	than	committed	memory,	even	if	the	amount	used	is	less	than	or	equal	to max	(for	example,	when	the	
system	is	low	on	virtual	memory).
GC	time:	the	cumulative	time	spent	on	garbage	collection	and	the	total	number	of	invocations.	It	may	have	multiple	rows,	each	of	which represents	one	garbage	
collector	algorithm	used	in	the	Java	VM.

Heap	memory	is	the	runtime	data	area	from	which	the	Java	VM	allocates	memory	for	all	class	instances	and	arrays.	The	heap	may	be	of	a	fixed	or	variable	size.	The	
garbage	collector	is	an	automatic	memory	management	system	that	reclaims	heap	memory	for	objects.
Non-heap	memory	includes	a	method	area	shared	among	all	threads	and	memory	required	for	the	internal	processing	or	optimization	for	the	Java	VM. It	stores	
per-class	structures	such	as	a	runtime	constant	pool,	field	and	method	data,	and	the	code	for	methods	and	constructors.	The	method	area	is	logically	part	of	the	
heap	but,	depending	on	the	implementation,	a	Java	VM	may	not	garbage	collect	or	compact	it.	Like	the	heap	memory,	the	method	area	may	be	of	a	fixed	or	
variable	size.	The	memory	for	the	method	area	does	not	need	to	be	contiguous.

3.2 Monitoring Class Loading
The	Classes	tab	displays	information	about	class	loading.

3.3 Monitoring Class Loading

3.4 Viewing VM Information
The	VM	Summary	tab	provides	information	about	the	Java	VM.

Red:	peak	number	of	threads
Blue:	number	of	live	threads.

To	check	if	your	application	has	run	into	a	deadlock	(for	example,	your	application	
seems	to	be	hanging),	deadlocked	threads	can	be	detected	by	clicking	on	the	
"Detect	Deadlock"	button.
If	any	deadlocked	threads	are	detected,	these	are	displayed	in	a	new	tab	that	
appears	next	to	the	"Threads"	tab like	following	example.

The	red	line	is	the	total	number	of	
classes	loaded	(including	those	
subsequently	unloaded).
The	blue	line	is	the	current	number	
of	classes	loaded.

